Optimization Strategy for SRME on Highly Parallel Hardware

Marcel Nauta?, Lorenzo Casasanta®

1. Shearwater GeoServices

SHORT ABSTRACT - In this work, we review the optimization compromises made for running surface-related multiple
elimination (SRME) on GPUs and high-core count CPUs. SRME is a computationally intensive, data-driven, stage of
typical seismic data processing workflows. SRME is parallelizable at multiple levels, similar to modern hardware. This
allows a task-based dynamic scheduling approach with subsets of the hardware working on independent outputs, but
shared inputs. We found that the most important optimization is reducing disk reads by caching input data in the fastest
levels of memory. Since the parallelization is broken up at multiple levels, the data movement also occurs in stages to
exploit redundancies in the input requirements. Other optimizations include running asynchronous tasks, buffering the
pipeline of data movement, and recycling redundant calculations when outputting results in common-shot order.
However, care must be taken not to introduce an excessive memory footprint for large datasets. Therefore, we use a
total memory constraint and reduce the number of disk reads by serializing some steps in the data movement pipeline
and splitting large shot records with an offset based binning scheme. When memory is not an issue (e.g large CPU
memory compared to GPU memory), the data movement pipeline passes through a short FIFO circular buffer to make
the buffering more resilient to variations in system performance and reduce the cost of synchronization points for
dynamically scheduled work. The presentation will highlight analogies between multi-GPU machines and NUMA
architectures. Details of the data movement pipelines will be shown for a variety of field datasets.

INDEX TERMS — geophysics, seismic processing, multithreading, GPU, NUMA

l. MOTIVATION
Surface-related multiple elimination (SRME) is a powerful algorithm that predicts sea surface-related reverberations for a
trace in a dataset relying on nearby traces from the same dataset, and eventually attenuates those multiples from the
original dataset. Although the compute cost of a single prediction is tiny, the size of modern datasets makes the problem
computationally expensive, especially in the context of iterative methods and multi-dimensional convolution operators.

In recent years, hardware platforms have become increasingly reliant on scalability and parallelism. SRME has multiple
levels of parallelism that can be exploited. Although not published to our knowledge, common industry practice on CPUs
in the 2010s was to multithread the innermost loop over bounce points for a single prediction. In this work we generalize
this algorithm to exploit multiple levels of parallelism based on available hardware. This includes high-core count CPUs as
well as GPUs. Focus is on the compromises made to exploit data movement redundancy, compute redundancy, and
concurrent operation of all hardware components.

Il. HYPOTHESIS
In the simplest case, SRME can be implemented on a single-core machine, with a small amount of RAM, assuming access
to the entire dataset. For a given source-receiver pair, the vanilla algorithm computes contributing traces on a pre-
determined grid of bounce locations. At each bounce location, two traces are selected from a look-up dataset based on a
header distance measure, these traces are then adjusted for any kinematic error and convolved with each other. A final
summation over all the bounce point locations creates the multiple prediction for the chosen single source-receiver pair.

In practice, redundant reads and redundant compute are removed at the cost of an increased memory footprint. Exploiting
redundancy is extremely important because disk reads occur at 100MB/s — 10GB/s whereas memory movement inside a
GPU is now at speeds of 1TB/s — 10TB/s. Similarly, searching for required nearby traces, reading data from disk, and
processor compute can all be done simultaneously at the cost of increased memory to remove data dependencies. For
large datasets, the fastest levels of memory are so scarce that the various optimizations need to be prioritized.

ll. METHODS AND RESULTS
The starting point for this project was a production-ready code that had been heavily optimized for clusters of x86 CPUs
with good MPI connectivity. The end goal was a feature complete, backwards compatible tool additionally optimized for
both GPUs and larger core count CPUs. We understood that this required a near re-write of the code, but we strove to
minimize the deviation of any new code from the main development branch. To ease the testing burden, we stacked over
bounce points in a multi-threaded, but deterministic way. The chosen order is irrelevant, and has some additional cost,
but allows automated testing of many optimizations and often relieves the need for manual QC by a domain expert.

The algorithm was pipelined at several levels. This is commonly implemented with double buffering, but we extended the
concept to a short FIFO circular buffer. This allows highly variable tasks such as disk reads to work further ahead and
reduce the risk of intermittent stalls. The longer the circular buffer, the higher the memory footprint of that stage in the
pipeline. When memory at some level is scarce, the length of the buffer can be reduced to 1. This serializes part of the
pipeline but can be essential to exploiting as much redundancy as possible, which also has a significant memory footprint.

There are two main levels where we exploit the redundancy of different predicted traces. The first, which is common
industry practice, is to organize the outputs in common-shot and avoid recomputing source side bounce points resulting
in a maximum theoretical speedup of half the compute. Unfortunately, for large shots, this once again has a significant
memory footprint. Therefore, we break up large shots in the offset domain and apply apertures to the bounce points to
save memory at the cost of some recompute.

The second level of redundancy is in the data read from disk into fast levels of memory. To exploit this, CPU threads work
ahead to determine a set of outputs that rely on a similar subset of input traces that fit in the memory available. This
optimization is so important on GPU that we typically double buffer disk reads into CPU memory and then retain a single
copy on GPU. The maximum theoretical speedup of this optimization is the ratio between the fast levels of memory and
disk, which are typically orders of magnitude different. Therefore, when memory is scarce, this optimization takes priority.

IV. CONCLUSION
Leveraging an incremental development approach, we upgraded an existing production SRME tool to run on GPU and re-
optimized for NUMA architectures. We found the most important optimization is to minimize the number of times input
data is moved from slow levels of memory such as disks, to fast levels of memory, such as GPU memory. Additionally, we
leveraged task-based execution at several levels of parallelism to implement dynamic scheduling with reproducible results.

BIO

Marcel Nauta has been working in high performance computing for seismic exploration for over 10 years but will often
draw from his upbringing in a family bakery to illustrate the importance of HPC concepts. When memory access patterns
are compared to the physical distance someone would walk to grab a cookie the importance becomes laughably obvious.

REFERENCES
[1] B. Dragoset, E. Verschuur, I. Moore, R. Bisley, A perspective on 3D surface-related multiple elimination. Geophysics,
2010. https://doi.org/10.1190/1.3475413

