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ABSTRACT 

 

In many applications in seismic inversion, the setup of the 

inverse problem typically relies on the minimization of an 

objective function, which is the linear combination of a 

differentiable term and a non-smooth regularization term. 

Hinging on proximal solvers, a whole stew of optimization 

strategies has been devised to overcome the mathematical 

challenges of non-smooth regularization (Parikh, 2014). 

Here, we look at the non-trivial question of uncertainty 

quantification (UQ) for such problems - generalizing UQ 

beyond the use of normally-distributed (Gaussian) priors. 

While convex optimization is widely applied to 

deterministic inverse problems, there are no established 

strategies for estimating the associated posterior distribution, 

especially when considering variational inference (VI, Blei, 

2017). To address this need for VI-based UQ in general 

convex optimization problems we aim at a notable solution 

based on  the smoothing of such non-smooth objectives via 

infimal convolution, also known in the literature as the 

Moreau envelope. 

 

We start by considering the log-posterior distribution 

associated with a generic inverse problem: 

− log 𝑝(𝒙|𝒚) = 𝑓(𝒙) + 𝜆𝑔(𝒙) + const, 
where 𝒙 is a variable of interest (e.g. acoustic impedance) 

and 𝒚 are measured data (e.g. a seismic stack). The 

functional 𝑓 is convex and differentiable, while 𝑔 is a 

convex—though generally not differentiable—function. The 

parameter 𝜆 weights the relative strength of the 

regularization. We approximate the target posterior with a 

candidate distribution implicitly represented by a transport 

map 𝑇. Samples from the candidate distribution are thus 

obtained by evaluating 𝑇 with random inputs. Our choice of 

𝑇 belongs to the class of invertible networks known as 

normalizing flows (NF, Kobyzev, 2021). Conventional 

gradient-based optimization is, however, not directly 

applicable to this problem since 𝑔 is not differentiable. 

 

Our main goal is to replace g with a differentiable 

perturbation thereof. The main tool will be the proximal 

operator of a convex function, defined as: 

prox𝜆,𝑔(𝒙) = arg min
𝒙′

‖𝒙′ − 𝒙‖2/2 + 𝜆𝑔(𝒙′). 

The Moreau envelope of 𝑔 with “smoothing” level 𝜌 is: 

𝑔𝜌(𝒙) = min
𝒙′

‖𝒙′ − 𝒙‖2/(2𝜌) + 𝑔(𝒙′). 

Formally, we have 

lim
𝜌→0+

𝑔𝜌(𝒙) = 𝑔(𝒙), 

which ensures that, for small 𝜌, the Moreau envelope is 

close to the original functional. Furthermore, 𝑔𝜌 is 

differentiable and: 

∇𝑔𝜌(𝒙) = (𝒙 − 𝒙̅)/𝜌, s. t.  𝒙̅ = prox𝜌,𝑔(𝒙). 

In conclusion, we can swap the non-smooth term 𝑔 with its 

Moreau envelope, while still employing gradient-based 

optimization in the variational inference framework. Similar 

techniques can be applied to hard-constraint regularization 

as well (Peters, 2022). 

 

By relying on our approach to envelope total-variation 

constraints in acoustic impedance UQ (Figure 1), we show 

the capability of inferring posterior information from non-

Gaussian priors – as evidence by the displayed asymmetry 

between point-wise percentiles. 

 

 

Figure 1: Post-stack acoustic inversion results with Moreau-

enveloped total variation regularization (𝜌 = 0.1), obtained via NF-

based VI. We show the point-wise median and point-wise percentile 

to highlight the asymmetry of the posterior distribution (cf. 25% vs 

75%, and 5% vs 95% percentiles). 
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