

Seismic uncertainty quantification beyond the normal – machine-learning-based variational inference with Moreau-enveloped priors

Gabrio Rizzuti*, Ivan Vasconcelos, Lorenzo Casasanta, Shearwater GeoServices

ABSTRACT

In many applications in seismic inversion, the setup of the inverse problem typically relies on the minimization of an objective function, which is the linear combination of a differentiable term and a non-smooth regularization term. Hinging on *proximal solvers*, a whole stew of optimization strategies has been devised to overcome the mathematical challenges of non-smooth regularization (Parikh, 2014). Here, we look at the non-trivial question of uncertainty quantification (UQ) for such problems – generalizing UQ beyond the use of normally-distributed (Gaussian) priors. While convex optimization is widely applied to deterministic inverse problems, there are no established strategies for estimating the associated posterior distribution, especially when considering *variational inference* (VI, Blei, 2017). To address this need for VI-based UQ in general convex optimization problems we aim at a notable solution based on the smoothing of such non-smooth objectives via infimal convolution, also known in the literature as the *Moreau envelope*.

We start by considering the log-posterior distribution associated with a generic inverse problem:

$$-\log p(\mathbf{x}|\mathbf{y}) = f(\mathbf{x}) + \lambda g(\mathbf{x}) + \text{const},$$

where \mathbf{x} is a variable of interest (e.g. acoustic impedance) and \mathbf{y} are measured data (e.g. a seismic stack). The functional f is convex and differentiable, while g is a convex—though generally not differentiable—function. The parameter λ weights the relative strength of the regularization. We approximate the target posterior with a candidate distribution implicitly represented by a transport map T . Samples from the candidate distribution are thus obtained by evaluating T with random inputs. Our choice of T belongs to the class of invertible networks known as *normalizing flows* (NF, Kobyzev, 2021). Conventional gradient-based optimization is, however, not directly applicable to this problem since g is not differentiable.

Our main goal is to replace g with a differentiable perturbation thereof. The main tool will be the proximal operator of a convex function, defined as:

$$\text{prox}_{\lambda,g}(\mathbf{x}) = \arg \min_{\mathbf{x}'} \|\mathbf{x}' - \mathbf{x}\|^2/2 + \lambda g(\mathbf{x}').$$

The Moreau envelope of g with “smoothing” level ρ is:

$$g_\rho(\mathbf{x}) = \min_{\mathbf{x}'} \|\mathbf{x}' - \mathbf{x}\|^2/(2\rho) + g(\mathbf{x}').$$

Formally, we have

$$\lim_{\rho \rightarrow 0^+} g_\rho(\mathbf{x}) = g(\mathbf{x}),$$

which ensures that, for small ρ , the Moreau envelope is close to the original functional. Furthermore, g_ρ is differentiable and:

$$\nabla g_\rho(\mathbf{x}) = (\mathbf{x} - \bar{\mathbf{x}})/\rho, \quad \text{s. t. } \bar{\mathbf{x}} = \text{prox}_{\rho,g}(\mathbf{x}).$$

In conclusion, we can swap the non-smooth term g with its Moreau envelope, while still employing gradient-based optimization in the variational inference framework. Similar techniques can be applied to hard-constraint regularization as well (Peters, 2022).

By relying on our approach to envelope total-variation constraints in acoustic impedance UQ (Figure 1), we show the capability of inferring posterior information from non-Gaussian priors – as evidence by the displayed asymmetry between point-wise percentiles.

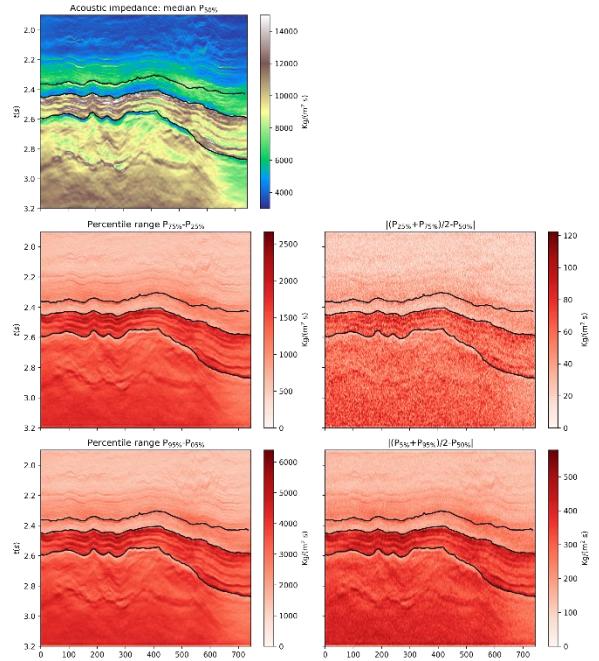


Figure 1: Post-stack acoustic inversion results with Moreau-enveloped total variation regularization ($\rho = 0.1$), obtained via NF-based VI. We show the point-wise median and point-wise percentile to highlight the asymmetry of the posterior distribution (cf. 25% vs 75%, and 5% vs 95% percentiles).

Acknowledgements

We thank Prof. Tristan van Leeuwen for many insightful discussions on convex optimization.