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ABSTRACT

In many applications in seismic inversion, the setup of the
inverse problem typically relies on the minimization of an
objective function, which is the linear combination of a
differentiable term and a non-smooth regularization term.
Hinging on proximal solvers, a whole stew of optimization
strategies has been devised to overcome the mathematical
challenges of non-smooth regularization (Parikh, 2014).
Here, we look at the non-trivial question of uncertainty
quantification (UQ) for such problems - generalizing UQ
beyond the use of normally-distributed (Gaussian) priors.
While convex optimization is widely applied to
deterministic inverse problems, there are no established
strategies for estimating the associated posterior distribution,
especially when considering variational inference (VI, Blei,
2017). To address this need for VI-based UQ in general
convex optimization problems we aim at a notable solution
based on the smoothing of such non-smooth objectives via
infimal convolution, also known in the literature as the
Moreau envelope.

We start by considering the log-posterior distribution
associated with a generic inverse problem:
—logp(x|y) = f(x) + Ag(x) + const,

where x is a variable of interest (e.g. acoustic impedance)
and y are measured data (e.g. a seismic stack). The
functional f is convex and differentiable, while g is a
convex—though generally not differentiable—function. The
parameter A weights the relative strength of the
regularization. We approximate the target posterior with a
candidate distribution implicitly represented by a transport
map T. Samples from the candidate distribution are thus
obtained by evaluating T with random inputs. Our choice of
T belongs to the class of invertible networks known as
normalizing flows (NF, Kobyzev, 2021). Conventional
gradient-based optimization is, however, not directly
applicable to this problem since g is not differentiable.

Our main goal is to replace g with a differentiable
perturbation thereof. The main tool will be the proximal
operator of a convex function, defined as:
prox; 4(x) = arg n}lci,nllx’ —x|12/2 + Ag(x").
The Moreau envelope of g with “smoothing” level p is:
9p(x) = minllx’ — x[|*/(2p) + g (x).
Formally, we have
pliggu o (x) = g(x),

which ensures that, for small p, the Moreau envelope is
close to the original functional. Furthermore, g,, is
differentiable and:

Vg,(x) = (x —%)/p, s.t. X = prox, 4 (x).
In conclusion, we can swap the non-smooth term g with its
Moreau envelope, while still employing gradient-based
optimization in the variational inference framework. Similar
techniques can be applied to hard-constraint regularization
as well (Peters, 2022).

By relying on our approach to envelope total-variation
constraints in acoustic impedance UQ (Figure 1), we show
the capability of inferring posterior information from non-
Gaussian priors — as evidence by the displayed asymmetry
between point-wise percentiles.
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Figure 1: Post-stack acoustic inversion results with Moreau-
enveloped total variation regularization (p = 0.1), obtained via NF-
based VI. We show the point-wise median and point-wise percentile
to highlight the asymmetry of the posterior distribution (cf. 25% vs
75%, and 5% vs 95% percentiles).
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