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Summary 

 

We investigate options to perform integration 

preconditioning for Ocean bottom node (OBN) data 

acquired with accelerometers. When amplitude 

perturbations due to sensor saturation are present, integration 

exaggerates them through convolution with the integration 

filter; therefore, their correction is desirable. Furthermore, 

the affected samples may impact PZ calibration, wavefield 

separation and multi-dimensional deconvolution, therefore a 

high fidelity correction is needed. We found that two 

algorithms, a 5D version of POCS (Projection into Convex 

Sets) and an adaptive version of PINNs (Physics Informed 

Neural Networks) are effective at interpolating the few 

affected data samples. We present examples of their 

application to field data acquired with either a standard 

source array or a bandwidth-controlled source array, as the 

latter reduces sensor saturation and complements the 

proposed processing solution.   

 

Introduction  

 

The acquisition of multicomponent seismic data on the 

ocean bottom is common practice. In shallow water, the 

source can be very close to the seabed receiver and the 

amplitude of the seismic signal arriving may exceed the 

dynamic range of the recording sensor. For Ocean Bottom 

Nodes (OBN), the direct arrival on the hydrophone and 

occasionally on the vertical component recording may be 

clipped. This issue affects all types of recording sensors on 

the seabed, including hydrophones, geophones, DAS cables 

(Distributed Acoustic Sensing) and MEMS (Micro-Electro-

Mechanical Systems). 

 

Recently MEMS-based particle acceleration measurements 

entered the commercial marine seismic market. These were 

first introduced in streamers (Paulson et. al, 2015) and later 

in OBN (Hager, et. al, 2022, Tellier et. al, 2023).  The flat 

and undistorted amplitude and phase spectrum of MEMS 

sensors over the entire desired bandwidth, extending down 

to 0 Hz, provides the highest signal fidelity. Additionally, 

these sensors allow for the real-time extraction of pitch and 

roll information directly from the sensor itself, eliminating 

the need for separate measurements.  

 

Rentsch et al. (2025, submitted for the EAGE annual 

conference) highlight that source energy beyond the seismic 

bandwidth can cause saturation, and a saturated MEMS may 

clip cleanly or experience a very short temporary loss of its 

force feedback control loop (often referred to as overdrive), 

leading to amplitude perturbations in the near offsets. 

However, Rentsch et al. 2025 show that the onset of 

saturation and overdrive can be effectively delayed through 

the use of bandwidth-controlled seismic sources, such as 

eSource and Bluepulse. As a reference on bandwidth-

controlled sources, see for example Laws (2013). When 

amplitude perturbations are present on acceleration data, the 

subsequent integration to velocity required for 

multicomponent wavefield separation will be affected by 

leaving an imprint of the integration filter.  

 

In this study we investigate the processing solution for 

saturation and overdrive. We propose effective approaches 

for correcting affected samples as a preconditioning to 

integration as well as for general use in the presence of 

clipping for any component. This step should be performed 

before multicomponent data rotation to limit its application 

to those components affected during acquisition.  

 

The affected samples are usually of the order of few 

milliseconds even in extreme cases. We found that 

interpolation approaches can solve this problem. It should be 

noted that the problem at hand is different from the classic 

interpolation problem that applies to whole traces, as only a 

few samples are at play here.  

 

Previous studies have explored the use of Projection Onto 

Convex Sets (POCS), initially proposed by Abma and Kabir 

(2006), for reconstructing overdriven samples in 1D (Zhang 

et al., 2016) and 2D (Seher, 2024) Fourier domains. Building 

on these methods, we present two approaches: the use of an 

adaptive version of Physics-Informed Neural Networks 

(PINNs) and the extension of POCS to multi-dimensional 

domains. These approaches are demonstrated with both 

synthetic and real data examples. 

 

PINNslope interpolation 

 

Recently Brandolin et al. (2023) introduced PINNslope, a 

seismic data interpolation method utilizing PINNs as 

described by Raissi et al. (2019). This innovative framework 

interpolates seismic data while simultaneously estimating 

the local slope field by jointly training two feed-forward 

neural networks.  

 

The training leverages both the local plane-wave partial 

differential equation (PDE) and the available observed data, 

incorporating them as distinct terms in the loss function. 

Despite the promising results, a significant hurdle of this 

technology is its slow learning process, requiring numerous 

iterations to achieve an acceptable reconstructed result. 

Kumar & JafarGandomi (2024) addressed this challenge by 

introducing an adaptive step in this approach. The improved 

method dynamically adjusts both the linear layers and the 
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activation functions of the network architecture, which in 

turn not only enhances the accuracy of the reconstructed 

wavefields but also substantially reduces the number of 

training epochs required.  

This methodology takes input data (𝑑𝑗), identifies traces or 

samples for reconstruction, and uses PINNslope with two 

parallel neural networks to update the wavefield (𝑢𝑗) and 

estimate slopes (𝜎+ & 𝜎−). The loss function (𝐽) includes 

three terms: two enforcing physics-based constraints via 

plane wave PDEs (one with a positive slope 𝜎+ and the other 

with a negative slope 𝜎−) and one minimizing data loss at 

known locations: 
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where, 𝑁𝑡 are the number of known grid point locations and 

𝑁𝑢 are the total number of grid point locations. The scalar 𝜆 

is the weighting parameter controlling the influence of the 

data term. To accelerate results, we use adaptive linear layers 

followed by adaptive activation functions. 

 

As explained by Kumar & JafarGandomi (2024), the main 

innovative steps we use to achieve significant speedup 

involve incorporating adaptive linear layers and adaptive 

activation functions into the network architecture (Cortes, 

2016). The linear layers are transformed by incorporating a 

learnable scaler, denoted as α, to dynamically adjust the 

outputs, making the linear transformation 𝒚 = 𝜶(𝑾𝒙 + 𝒃), 

where 𝑾 and 𝒃 are weights and biases of each neuron in the 

network. This adaptation allows the network to fine-tune the 

influence of each layer, providing greater flexibility and 

control over the learning process.  

  

Additionally, we enhance the robustness of the activation 

functions by implementing adaptive activation with shifting. 

Specifically, we introduce learnable parameters 𝜶 and 𝜷 into 

the activation function, modifying it to 𝜶(𝑻𝒂𝒏𝒉 ∗ 𝒙 + 𝜷). 

This adjustment allows the network to dynamically modify 

both the amplitude and the shift of the activation function, 

making it more adaptable to the varying scales and shifts in 

the data. This dual adaptation strategy significantly 

accelerates the convergence of the PINNs, leading to more 

efficient and effective learning of complex physical patterns. 

The adaptive nature of 𝜶 and 𝜷 ensures their continual 

adjustment based on training data, contributing to faster 

training processes. Through our experiments, we have 

observed that results which previously required 15,000 

epochs without adaptive methods, can now be achieved in 

just 1,500 epochs with adaptive techniques.  

 

Multidimensional POCS interpolation 

 

POCS (Abma and Kabir, 2006) is a well-known approach 

for reconstructing missing data in the seismic industry. This 

technique is based on the principle of projecting data onto a 

set of convex constraints, which represent the known 

properties of the data. The POCS method iteratively refines 

the data by alternating between the time-space domain and a 

transform domain, such as the Fourier domain.   

 

Due to its computational cost, POCS is usually limited to one 

or two dimensions. To ensure the fidelity of the 

reconstructed amplitudes, we extended the approach to five 

dimensions by using multiple sources and receivers 

simultaneously using a 5D frequency-wavenumber 

transform. This approach is computationally affordable 

because for our integration preconditioning application we 

are only interested in reconstructing a very small portion of 

the data in both space and time.  

 

Other possible approaches 

 

During our research, we explored a method involving de-

ghosting and re-ghosting the pressure component to 

calculate a simulated vertical component and hence a 

correction factor for anomalous amplitudes on real vertical 

component. However, this approach proved ineffective due 

to several challenges: the difficulty in parameterizing the 

ghost operator, the presence of aliasing, and the need to 

accurately separate the direct arrival from the seabed 

reflection. 

We also considered calculating the correction factor 

specifically for data between the direct arrival and the first-

order multiple, leveraging the one-way nature of the 

wavefield in this zone. This method allows for the 

straightforward calculation of particle velocity or 

acceleration from pressure based on Newton’s law. 

However, it also requires the separation of the direct arrival 

and, besides, becomes unreliable in very shallow water. 

Consequently, we abandoned these two approaches and 

focused on the POCS and PINNs methods described earlier. 

 

Detection of perturbed amplitudes 

 

The first step in the reconstruction of anomalous amplitudes 

is their detection. In the case of MEMS the vertical 

component, bearing the maximum of the gravity component 

(up to 1g depending on orientation), is usually more exposed 

than horizontal components. Modelling studies and field 

observations indicate the maximum offset range for 

detection. Within this offset range, detection is performed 

using the velocity domain, where acceleration anomalies are 

more evident because of the imprint of the integration filter.  

 

The method identifies perturbed amplitudes in seismic data 

by analysing trace signals through integration, filtering, 

differentiation, and thresholding. The acceleration data in 

gravitational units (g) are integrated to obtain velocity, and 

the resulting signal is smoothed with a median filter to 
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eliminate noise. Following this, the derivative of the 

smoothed velocity signal is calculated to highlight rapid 

amplitude variations. A threshold is applied to this derivative 

to detect regions where the amplitude surpasses a predefined 

limit, marking them as anomalies. This procedure helps 

pinpoint the sample range that requires reconstruction using 

the methods mentioned above (PINNs or 5D POCS). 

 

Examples 

 

The data examples come from a 2D OBN test line acquired 

in the North Sea. The water depth is 100m. The receiver line 

is 2km long, with OBNs 50m apart. The source line is 6.5km 

long, with 25m flip-flop shooting and 50m cross-line 

separation between the sources, so that the shot points are at 

25m cross-line from the receiver line. The source line 

operated 3147in3 arrays: a standard array and a bandwidth-

controlled array were used at alternating shot points.   

 

Figures 1a and 1e show the raw vertical components of the 

acceleration records and the particle velocity components of 

a common-receiver gather obtained by numerical integration 

of the recorded MEMS data for the standard source. 

Corresponding records from the bandwidth-controlled 

source are shown in Figures 1b and 1f, respectively. Note 

that for the data acquired with the standard source small 

perturbations are present at the near offsets right after the 

direct arrival. The duration of these perturbations is about 

20ms. These perturbations become more noticeable in the 

integrated domain (Fig 1e). Such perturbation is not 

observed for the bandwidth-controlled source. In order to 

avoid the artefacts in the integrated domain, we first detected 

and removed the affected samples (as discussed above) and 

then tested both reconstruction approaches, POCS and 

PINNs. The reconstruction results are shown in Figures 1c 

and 1d, and the corresponding integrated records in Figures 

1g and 1h for POCS and PINNs, respectively. Both 

reconstruction results are satisfactory in both the 

acceleration and particle velocity domains, but blind test 

benchmarks show that the PINNs method performs better in 

terms of precision. Synthetic studies and other tests 

performed on real data also confirm that the PINNs method 

in general performs better, although at a higher 

computational cost.  

 

Occasionally several neighboring traces may suffer from this 

amplitude perturbation effect. To better demonstrate this 

Figure 2 shows a common-shot gather where five traces have 

been affected. The arrangement of the panels in this figure is 

the same as those in Figure one and the same conclusions 

can be drawn in terms of successful preconditioning, and 

improved results with PINNs over POCS. 

 

 

 

Figure 1: (a & b) A common-receiver gather showing measured vertical component acceleration with standard source and bandwidth controlled 
source, respectively, c) precondition of a)  with POCS and d) with PINNs. The bottom row (e-h) shows the corresponding images after integration 

into the particle velocity domain.   
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Discussions 

 

While PINNs have demonstrated their potential for solving 

interpolation problems with embedded partial differential 

equations constraints, their practical application to large-

scale seismic interpolation remains challenging. Our study 

highlights the effectiveness of POCS for reconstruction, 

particularly when applied across the entire dataset.  

 

One of the key challenges with PINNs is their sensitivity to 

random initialization, where different random seeds can lead 

to variations in the results, often necessitating multiple runs 

to achieve consistency. Additionally, the computational cost 

of training PINNs is significantly higher than that of 

traditional methods, requiring GPUs and substantial 

processing power. The training process is inherently slow, 

often demanding numerous iterations to achieve 

convergence, even with adaptive optimization techniques. 

As a result, PINNs are typically applied in 2D space, 

whereas POCS can efficiently operate in 5D space at a much 

lower computational cost.  

 

These limitations emphasize the need for further research to 

enhance the training stability, computational efficiency, and 

scalability of PINNs to higher-dimensional problems. 

Addressing these challenges is an ongoing effort, and we aim 

to explore potential improvements in future work, providing 

updates in subsequent publications. 

 

Conclusions 

 

We investigated several options for integration 

preconditioning of OBN data acquired with accelerometers 

and focused on two interpolation-based approaches to 

remove anomalous amplitudes: Physics Informed Neural 

Networks (PINNs) and 5D POCS (Projection into Convex 

Sets). 

 

Interpolation proved effective, as the number of affected 

samples is small. This fact along with the high precision of 

these algorithms, compensates for the known difficulty of 

interpolating high-frequency, shallow data. We found that 

both methods are effective, with the first delivering greater 

accuracy at the expense of a higher computational cost. We 

demonstrated both methods on a field data example acquired 

using an OBN equipped with a hydrophone and MEMS 

accelerometers and both a standard 3147in3 source and a 

bandwidth-controlled source of the same volume. 
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Figure 2: (a & b) A common-shot gather showing measured vertical component acceleration with standard source and bandwidth controlled 

source, respectively, c) precondition of a)  with POCS and d) with PINNs. The bottom row (e-h) shows the corresponding images after integration 

into the particle velocity domain.   


