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Summary 

 

We present a novel constrained Dix inversion 

method that leverages proximal operators within 

the Alternating Direction Method of Multipliers 

(ADMM) framework. Addressing problems 

inherent to Dix inversion, our method robustly 

manages various noise types in picked RMS 

velocity functions, including spikes and outliers 

in measurements that can be distributed in both 

the space and time domains. Moreover, the 

inverted model can be adaptively guided towards 

either blocky or smooth interval velocity fields, 

making it well-suited for large-scale three-

dimensional projects. The effectiveness of the 

proposed method is demonstrated through 

comprehensive validation on both synthetic and 

real data examples. 

 

Introduction  

 

The Dix formula (Dix, 1955) takes root-mean-

square (RMS) velocity profiles generally 

estimated using coherency functionals and 

converts them into interval or layer velocities. In 

addition to the inherent shortcomings of its 

geometrical assumptions, the formula's 

differencing operator can amplify measurement 

noise. Moreover, the presence of velocity 

inversions, may yield a negative radicand, often 

leading to unrealistic results. The conventional 

approach to address this limitation involves 

overly filtering the input data often leads to loss 

of resolution. 

Harlan (1999) proposed a constrained Dix 

inversion by reformulating the problem as an 

optimization one. The constrained Dix inversion 

framework minimizes a cost function that blends 

project-specific data misfit and regularization 

terms to describe the statistical properties of the 

noise in the data and the prior knowledge of the 

expected interval velocity trends. Such priors 

frequently necessitate the use of 𝐿1-type norms in 

both the objective function and regularization 

terms. While 𝐿2-norm misfit functions are 

effective for Gaussian noise, but they are 

inadequate when dealing with outliers. Semi-

automated semblance-based velocity analysis, or 

picking, is notoriously prone to outliers due to 

several factors including, but not limited to, 

residual coherent noise (e.g. multiples) that is not 

entirely suppressed during preprocessing, 

misidentified layers, or human errors in manual 

RMS velocity pick extraction.  

We choose the Isotropic Total Variation (TV) 

regularizer due to its directional neutrality, 

making it particularly well-suited to the complex 

geometries of real-world geology by preserving 

blocky layer structure while suppressing noise. 

Furthermore, applying bound constraints to 

internal velocity values is essential for achieving 

geologically meaningful solutions. These 

requirements lead to formulation of a semi-

smooth objective function that integrates both 

data misfit and regularization terms while 

enforcing bound constraints. To tackle this 

challenge, we utilize proximal operators within 

the Alternating Direction Method of Multipliers 

(ADMM) framework. A key strength of this 

approach is its flexibility, as the solver is general 

and not limited to the constrained Dix inversion 

framework. Instead, it can accommodate various 

misfit functions to match several noise statistics, 

integrate different regularization techniques, and 

remain agnostic to the specific nature of the linear 

(or nonlinear) forward operator. This versatility 

enables the solver to represent prior information 

more effectively, leading to a more robust and 

realistic inverted velocity model. 

To demonstrate the algorithm's effectiveness 

under different scenarios, we present both a 

synthetic and a field data example. 
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Theory 

 

The root-mean-square (RMS) velocity 𝑉𝑗 in 

discrete form can be written as: 

                      𝑉𝑗
2 =

1

𝑗+1
∑ 𝑣𝑘

2𝑗
𝑘=0 ,          (1) 

where 𝑣𝑘 is interval velocity. Dix formula solves 

for interval velocities from RMS velocity (Dix, 

1955). 

      𝑣𝑘 = [𝑘𝑉𝑘
2 − (𝑘 − 1)𝑉𝑘−1

2 ]
1
2       (2) 

Dix formula involves applying a scaled discrete 

derivative operator to the data, which inherently 

acts as a high-frequency amplifier, intensifying 

noise. This characteristic limits its effectiveness.  

To address these limitations, various forms of 

constrained Dix equations have been proposed 

(Harlan, 1996; Almomin, 2010; Golami and 

Naeini, 2019). In our approach, we define the 

unknown variable as 𝑚𝑖 ≔ 𝑣𝑖
2. We then choose a 

scaled form of the residual. Following (Almomin, 

2010; Golami and Naeini, 2019) we rework 

equation 1 into a scaled residual function, 

namely: 

 

 𝑟𝑗 ≔ ∑ 𝑣𝑘
2 − (𝑗 + 1)𝑉𝑗

2 = ∑ 𝑚𝑘 − 𝑑𝑗
𝑗
𝑘=0

𝑗
𝑘=0  (3) 

 

Using these definitions of residuals and inversion 

variables, we formulate the constrained Dix 

inversion problem as follows: 

              𝒎𝒊𝒏
𝐦

𝛽1|𝐌𝐦 − 𝐝|𝑝 + 𝛽2TV(𝐦)        (4) 

Subject to 𝐦𝑙 ≤ 𝐦 ≤ 𝐦𝑢 

where 𝐌 represents the discrete integrator 

operator for simple summation, 𝐦𝑙 and 𝐦𝑢 are 

the lower and upper bounds for the unknown 

variable,  𝛽1 and 𝛽2 are regularization constants.  

The choice of norm, 𝑝, depends on the type of 

noise in the RMS measurements. The 𝑝 = 2 norm 

is the natural choice in the presence of additive 

Gaussian noise. However, the robust 𝑝 = 1 norm 

is the obvious choice when the additive noise 

includes outliers. In what follows, we present the 

formulation for the 𝑝 = 1 case, noting that 

extending to other norms is straightforward. 

For ease of presentation, we follow a 2D 

formulation but the extension to 3D is trivial. The 

data and unknown vectors are 𝐝 ∈ 𝑅𝑁𝑧×𝑁𝑥 and 

𝐦 ∈ 𝑅𝑁𝑧×𝑁𝑥.  

The isotropic TV in 2D can be written using 

matrix norms (Ravasi et.al. 2024) as follows:  

TV(𝐦) = |∇𝐦|2,1 = ∑ √(𝐷𝑥𝐦)𝑖
2 + (𝐷𝑦𝐦)

𝑖

2
𝑖  

(5) 

To solve this problem with the ADMM 

framework, we introduce the slack variables 𝐳𝟏 ∈
𝑅𝑁𝑧×𝑁𝑥, 𝐳𝟐 ∈ 𝑅2×𝑁𝑧×𝑁𝑥 and 𝐳𝟑 ∈ 𝑅𝑁𝑧×𝑁𝑥 and we 

reformulate the constrained Dix problem in 

equation 4 as 

𝒎𝒊𝒏
𝐮

𝛽1|𝐳1|1 + 𝛽2|𝐳2|2,1 + g(𝐳3) 

Subject to 𝐌𝐦 − 𝐝 = 𝐳𝟏 

𝐃𝐦 = 𝐳2 

                                𝐦 = 𝐳3                     (6) 

Here, 𝐃:=(
𝐃𝑥

𝐃𝑦
) where 𝐃𝑥 and 𝐃𝑦 are discrete 

derivative operators in the x and y directions, 

respectively. The function g(𝐳3) represents 

indicator function for inequality constraints: 

g(𝐳3) = {
0,     if 𝐦𝑙 ≤ 𝐳3 ≤ 𝐦𝑢,
+∞,         otherwise.   

 

 

We follow a scaled augmented Lagrangian 

approach and introduce the Lagrange 

multipliers 𝛌1 ∈ 𝑅𝑁𝑧×𝑁𝑥,  𝛌2 ∈ 𝑅2×𝑁𝑧×𝑁𝑥,  𝛌3 ∈
𝑅𝑁𝑧×𝑁𝑥  and the augmented Lagrangian 

constants 𝜌1, 𝜌2 and  𝜌2).The resulting ADMM 

algorithm recursion at iteration k becomes (Boyd 

et al., 2011) 

𝐦𝑘+1 = min
𝐦

{
𝜌1

2
|𝐌𝐦 − 𝐝 − 𝐳1

𝑘 + 𝛌1
𝑘|

2

2

+
𝜌2

2
|𝐃𝐦 − 𝐳2

𝑘 + 𝛌2
𝑘|

2

2

+
𝜌3

2
|𝐦 − 𝐳𝟑

𝑘 + 𝛌3
𝑘|

2

2
} 

𝐳1
𝑘+1 = min

𝐳1

{𝛽1|𝐳1|1

+
𝜌1

2
|𝐌𝐦𝑘+1 − 𝐝 − 𝐳1 + 𝛌1

𝑘|
2

2
} 
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𝐳2
𝑘+1 = min

𝐳2

{𝛽2|𝐳2|2,1

+
𝜌2

2
|𝐃𝐦𝑘+1 − 𝐳2 + 𝛌2

𝑘|
2

2
} 

𝐳3
𝑘+1 = min

𝐳1

{g(𝐳3) +
𝜌3

2
|𝐦𝑘+1 − 𝐳3 + 𝛌3

𝑘|
2

2
} 

𝜆1
𝑘+1 = 𝜆1

𝑘 + 𝜌1(𝐌𝐦𝑘+1 − 𝐝 − 𝐳1
𝑘+1) 

𝜆2
𝑘+1 = 𝜆2

𝑘 + 𝜌2(𝐃𝐦𝑘+1 − 𝐳2
𝑘+1) 

              𝜆3
𝑘+1 = 𝜆3

𝑘 + 𝜌3(𝐦𝑘+1 − 𝐳3
𝑘+1)        (7) 

 

The model update minimizes a quadratic 

function, while the slack variables 𝐳𝑖 correspond 

to a proximal or a projection operator with well-

known closed-form solutions (Boyd et al., 2011). 

 

Results 

 

We perform synthetic inversion using 2D 

Marmousi RMS velocity data derived from the 

true interval velocity model, coarsely sampled at 

layer boundaries. Gaussian or Cauchy noise is 

introduced to the data to evaluate the inversion 

performance under different noise conditions. 

We conduct multiple inversion experiments to 

demonstrate the robustness of the inversion 

process across various noise characteristics and 

regularization techniques. For data corrupted 

with Gaussian noise, the inversion is performed 

using the plain-vanilla Dix equation 2, and the 

constrained Dix inversion in equation (6) with 

two approaches: an 𝐿2-norm misfit combined 

with first-order Tikhonov regularization and an 

𝐿2-norm misfit with total variation (TV) 

regularization (Figure 1). For data affected by 

Cauchy noise, we employ inversion with the Dix 

formula and constrained Dix inversion with two 

configurations: an 𝐿2-norm misfit with TV 

regularization and an 𝐿1-norm misfit with TV 

regularization (Figure 2). 

The synthetic Marmousi inversion results reveal 

several key findings. The plain-vanilla Dix 

formula proves ineffective at suppressing either 

Gaussian or Cauchy noise. In contrast, isotropic 

Total Variation (TV) regularization efficiently 

reconstructs geological structures, underscoring 

its value in noise-laden inversion. The 𝐿2-norm 

misfit function performs well in suppressing 

Gaussian noise but falters in the presence of 

outliers. On the other hand, the 𝐿1-norm misfit 

function adeptly manages Cauchy noise, which 

mimics outliers, thus demonstrating its 

appropriateness for datasets with considerable 

noise variability. 

 

 
Figure 1 – Inversion results for the synthetic 

Marmousi test with added Gaussian noise. 

Interval velocity models from left to right: (a) 

inversion using the Dix equation 2, (b) 

constrained Dix inversion in equation 6 using L2-

misfit and first-order Tikhonov regularization, (c) 

constrained Dix inversion using L2-misfit and 

total variation regularization, and (d) the true 

model. The CMP spacing is 12.5m, and the time 

is in ms. 

 

A real data inversion example is shown in Figure 

3. In this example, the 3D sparse RMS 

measurements are inverted using the Dix 

equation 2 and constrained Dix inversion in 

equation 6 using 𝐿2-misfit and 𝐿1-misfit 

objective functions with total variation 

regularization.  

The differences in results among the three 

approaches are less pronounced than in the 

synthetic example, primarily due to the careful 

preconditioning of RMS picks to ensure stability 

in conventional Dix inversion. However, the 

constrained inversion results exhibit consistency 

with the baseline inversion, offering minor 

improvements in resolution and lateral 

continuity. Notably, as demonstrated in the 

synthetic example, this approach eliminates the 

need to precondition the picks.  
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Figure 2 – Inversion results for the synthetic 

Marmousi test with added Cauchy noise. Interval 

velocity models from left to right: (a)inversion 

using the Dix formula, (b) constrained Dix 

inversion using L2-misfit and total variation 

regularization, (c) constrained Dix inversion 

using L1-misfit and total variation regularization, 

and (d) the true model. The CMP spacing is 

12.5m and the time is in ms. 

 

 

 
Figure 3 – Inverted velocity estimate using field 

data, from left to right: (a) inversion using the Dix 

formula, (b) constrained Dix inversion using L2-

misfit and total variation regularization and (c) 

constrained Dix inversion using L1-misfit and 

total variation regularization. The ILINE and 

XLINE spacings are 80 and 320m, respectively; 

time is in ms. 

 

Conclusions 

 

Despite relying on simplified assumptions, Dix 

inversion remains a widely used tool in the 

seismic velocity analysis toolbox.  

Previous works proposed addressing the 

limitations of inherent differentiation in the Dix 

equation by reformulating it as a constrained 

inverse problem, relying on semi-smooth 

objective functions, regularizers, and hard 

inequality constraints. 

In this paper, we propose an innovative approach 

using the Alternating Direction Method of 

Multipliers (ADMM) in combination with 

proximal operators to invert for interval 

velocities. Unlike other specialized Dix inversion 

methods, our approach is adaptable to a wide 

range of geophysical challenges. This method can 

be fine-tuned to meet the unique conditions of a 

given project. 

In the data domain, our approach leverages the 

robustness of the 𝐿1-norm misfit, making it 

particularly effective in handling outliers in the 

picked RMS functions, both temporally and 

spatially. This contrasts with other published 

methods, which tend to focus on managing 

Gaussian-distributed noise in an industry-

standard manner by filtering the velocity picks. 

Furthermore, the ADMM-based method allows 

for the incorporation of various model 

regularization techniques to enhance the inverted 

interval velocities, such as promoting blockiness 

or incorporating structural guidance. 

In conclusion, we present a highly effective 

solution to the well-known Dix inversion 

problem. Our method offers versatility and 

efficiency making it a valuable tool for 

geophysical velocity analysis.  
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