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SUMMARY

Seismic depth-imaging and inversion in complex geology
often use wave-equation operators for TTI or TORT symme-
tries, but these still struggle with numerical instabilities due
to incorrect adjoint operators and rapid tilt variations of sym-
metry axes of elastic tensors. We propose a novel approach
using frame bundles to describe heterogeneous anisotropic
velocity models, aligning local coordinate frames with the
elastic stiffness tensor’s tilt. This creates a curved manifold,
allowing us to derive wave-equations invariant to symmetry
orientation changes of elastic tensors describing the velocity
model. Our method provides true adjoint operators, supports
various parameterizations of symmetry axes orientations, and
interprets tilt variations as additional forces related to the
manifold’s curvature.

INTRODUCTION

Wave-equation operators designed for elastic media with
tilted-transverse isotropy (TTI), or tilted-orthorhombic (TORT)
symmetries are nowadays the tool of choice for seismic imag-
ing and inversion in complex geological settings. After their
introduction in the early 2000s (Alkhalifah, 2000), these op-
erators gained widespread acceptance in the 2010’s following
their rapid development by research groups in both oil and
service companies (e.g., Fletcher et al., 2009; Zhang and
Zhang, 2011; Duveneck and Bakker, 2011; Bube et al., 2012)
which have made these operators integral to Reverse-Time
Migration (RTM) and Full-Waveform Inversion (FWI) algo-
rithms.

A common feature of these works is the use of directional
derivatives to account for the spatial variation of TTI and
TORT symmetry axes of the elastic tensors comprising the
seismic velocity/earth models. Despite their application and
success, directional derivatives do not in general conform
to the geometry of the problem, because they are not truly
covariant differential operators and thus cannot provide true
adjoint operators. Consequently, numerical instabilities arise,
particularly when dealing with pronounced spatial variations
in the tilt of symmetry axes (Fletcher et al., 2009; Zhang et al.,
2009, 2011; Bube et al., 2012; Duveneck and Bakker, 2011).
Various ad-hoc solutions, such as smoothing the tilt fields
before simulations, have been proposed, but these approaches
do not address the root cause of the problem nor are always
satisfactory, because they smear important geological features

(e.g., bounding faults or salt bodies) which ideally one would
like to have as sharp as possible. Thus, the challenge of
finding stable adjoint operators for TTI and TORT media is
still an open question (e.g., Bube et al., 2016; Louboutin
et al., 2018; Le et al., 2019). Addressing the limitations of
directional derivatives is thus crucial to meet the growing
demand for better and more efficient simulations of seismic
waves in ever more challenging subsurface structures.

We argue that the limitations and numerical instabilities of
current wave-equations operators for TTI and TORT media
stem from overlooking a subtle but fundamental feature of
wave propagation in anisotropic media: introducing sym-
metry axes orientations as model parameters changes the
problem’s geometry, effectively creating a new curved mani-
fold. Using directional derivatives, in that geometrical sense,
implies that one ignores the effects of curvature of the new
augmented model space, approximating it as a flat manifold.
Such an approximation may work well where the symmetry
axes orientations do not significantly vary in space, but it is
not general enough to handle situations in which they do.

Our goal is to present a method that generalizes the direc-
tional derivatives approach, allowing us to derive symmetry-
orientation-invariant seismic wave equations suitable for vari-
ous numerical solvers, including finite-difference and spectral-
element methods (e.g. Afanasiev et al., 2018). These equa-
tions have differential operators that are inherently compatible
with the geometry of the manifolds representing heteroge-
neous anisotropic velocity models with TTI or TORT symme-
tries. This compatibility ensures true adjoint operators even in
the presence of rapid spatial variations of symmetry axes. We
anticipate that these orientation-invariant wave equations will
enhance computational efficiency and provide deeper insights
into the physics of elastic wave propagation in heterogeneous
anisotropic TTI and TORT velocity models.

Below, we review how tools from differential geometry help
represent heterogeneous and anisotropic seismic velocity
models as frame bundles that integrate elastic stiffness tensor
orientations into our model space geometry. This new concept
allows us to write covariant differential operators that account
for variable tilts of the elastic tensor’s symmetry elements. In
the results section, we demonstrate this by rewriting a wave
equation used in depth imaging as a fully covariant wave
equation, invariant to spatial changes in the orientation of the
elastic tensor.
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THEORY

Our development draws on fundamental concepts from dif-
ferential geometry that also underlie other physical theories
such as General Relativity and Gauge Theory: manifolds,
fiber bundles, and connections. We conceptualize anisotropic
velocity models as Riemannian manifolds described by six co-
ordinates: three spatial coordinates and three for the local ori-
entation of the elastic tensor. This parameterization is locally
trivial but globally complex, akin to how the Earth’s surface
appears locally flat (i.e., Euclidean) but is globally curved.
Thus, anisotropic velocity models are not six-dimensional Eu-
clidean spaces and require a more sophisticated construction.
Fiber bundles provide this framework by generalizing Carte-
sian products, allowing the creation of complex manifolds by
combining simpler ones (e.g., Tu, 2017). In our case, this
combination—called a fiber bundle—comes from attaching a
copy of the orientation grid (a manifold on its own) to every
point in our spatial coordinate grid (the base manifold). These
fibers can “twist” as they attach to the base space, creating in-
tricate global structures, which are stitched together smoothly
by transition functions. The bundle is characterized by the
combined total space, the base space, and a projection map
that matches points from the total to the base space. Classic il-
lustrations of fiber bundles are the cylinder and Moebius strip.
Both can be represented by the combination of a circle as a
base space with the real line representing the fibers attached
to each point of that circle. Locally, both the cylinder and
Moebius strip look like Euclidean spaces, but in the Moebius
strip, the orientation of the fibers changes along the circle,
resulting in a total space that is not a cylinder (see Figure 1).
Finally, connections extend the notion of directional deriva-
tives to fiber bundles. In curved spaces, connections allow
the parallel transport of vectors and tensors along curves in
the base space, enabling their comparison and differentiation
across different fibers.

In our description of TTI or TORT velocity models, we use
the so-called frame bundle, where the fiber represents the
space of all possible orientations of the frame describing the
local coordinate axes (Tu, 2017). Our total space model is
characterized by a local frame at each point in the base space,
taken to be the same frame in which elastic tensors are given
by their smallest number of parameters (five in the case of TTI
and nine for TORT; see Figure 2). This abstraction enables
us to deploy the powerful tools of fiber bundles to understand
elastic wave propagation in anisotropic models in a new and
useful way. It allows us to define a (gauge) connection opera-
tor that is (1) compatible with the metric of our 6D manifold
(ensuring true adjoint operators in wave propagation) and (2)
automatically accounts for spatial changes in orientation of
TTI or TORT symmetry axes when taking (covariant) deriva-

tives, making it unnecessary the rotation of elastic tensors
during wave propagation.

The fiber bundle approach splits the tangent space of the total
space into two complementary pieces, one along fibers and
another perpendicular to them. Consequently, the gauge con-
nection operator acting on a vector or tensor field 7' defined
over the total space manifold and taken along a vector is given
by the summation of two operators

DXT=VXT+Z(D(X)T7 )

where V represents the part of the connection accounting for
changes in position in the base space, and @ for changes in
the orientation of the elastic tensor (i.e., in the local frame
orientations). The connection 1-form, @, acts over each index
of T, thus the summation symbol in the definition of DxT.
Incidentally, (differential) 1-forms are dual to vectors, i.e., on
manifolds they represent linear functions acting on vectors
to produce scalars. For simplicity and to highlight the contri-
bution of spatial variation of orientations of anisotropic axes
into wave propagation, we take the base space to represent a
Euclidean space, such that Vx = dx, i.e., changes along base
space directions are given by directional derivatives. Tech-
nical details aside, the operator @ in the frame bundle has
a very specific form: it is a skew-symmetric 3 X 3 matrix,
whose elements are given by @ = A~ !dh, where h is the rota-
tion/attitude matrix determining the orientation of the elastic
tensors at each point in the anisotropic velocity model. Thus,
 is a model parameter, independent of propagation, which
may be precomputed or obtained on the fly, once the attitude
matrix is set, regardless of its parameterization using Euler
angles, quaternions, or other methods.

RESULTS

We can now recast the wave equations for media with TTI
or TORT symmetries using the frame-bundle approach. In
practice, this involves replacing any partial or directional
derivatives with the gauge connection D and ensuring the
resulting equation is frame independent. For example, starting
from a wave equation similar to those found in Fletcher et al.
(2009) and Duveneck and Bakker (2011) written in terms of
stress tensor 6 components and considering constant density,
we go from

0} 0;j=A; 9,0 0y, 2)
to
a,za,j = AijlelDerr = Aijle (tr (DG))H
97 0ij =AM (ir(D(Da))), 3
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where A is the density-normalized elastic stiffness tensor and
summation over an index is denoted by its appearance in
one upstairs and one downstairs position. After the second
equality sign in equation 3, we switched to a more abstract
notation to show that the sequence of covariant derivatives
represents the gradient of the divergence of the stress tensor.
Because D is compatible with the metric (i.e., Dg = 0, where
g is the metric tensor of the manifold), it commutes with
the trace operator and so we reach the expression with the
term D (Do). This is not a tensorial quantity, thus not frame-
independent. It is, nevertheless, part of the Hessian of the
stress tensor,

D%(’Yc = DX (Dyd) —DDXyG7 (4)

which is tensorial thanks to the extra term Dp,y o (with
X and Y being vectors). Because equation 2, our starting
point, is set up in a Euclidean manifold—where the second
term of the Hessian is identically zero—our translation from
directional derivatives to covariant ones requires that 9 d; 0y,
be understood as the full Hessian. Thus, equation 2 should
be written as the full Hessian. Thus, equation 3 should be
written as

oy =AM [tr(ch)]]d = —A;Maoy, 5)

where A is the Laplacian operator compatible with the metric
of the manifold, which is not simply the summation of second
partial derivatives. In curved spaces, like our frame bundle,
second covariant derivatives do not commute, but their differ-
ence defines a crucial quantity that measures the curvature of
the total space itself, the curvature tensor R(X,Y), i.e.,

Dyyo—Dyx0=> R(X,Y)o, ©6)

where the summation is over the indices of the stress tensor,
analogously to the behavior of the connection 1-form ® in
the definition of covariant derivative. Equation 6 underscores
that the Laplacian in equation 5 contains terms related to the
curvature tensor, since one could write

Ac= —1r [D)Z(ﬁyc] =1 [D%chr S R(X.Y) c} .
(7

This is a physically insightful result. First, it reinforces the
limitation of the directional derivative approach because terms
with the connection 1-form @ (found in the covariant deriva-
tive D) and the curvature R are ignored. Second, it links
differences in orientation of symmetry axes in TTI and TORT
models to extra accelerations (akin to tidal forces) in the wave
equation, coming from the action of the curvature (tensor) on
the stress perturbations describing the waves. Lichnerowicz
(1961) provides the following expression for the Laplacian of
second-order tensors in Riemannian manifolds

(Ac), = —D'Djoy + Ricy 0] + Ricyi6} — 2R;j116" | (8)

where Ric is the Ricci tensor, obtained from contraction of
two indices of the curvature tensor R. The Lichnerowicz
Laplacian in equation 8 is self-adjoint and it neatly separates
the cuvature effects when computing Laplacians. The term
D'D;cy, the rough Laplacian, is what one would get if the
manifold were flat. It comprises the familiar d'd;0y; terms
plus terms with the connection 1-form @. Note that the Lapla-
cian returns a tensor of the same dimension and with the same
symmetries of the input tensor. In our frame bundle, this
means that Ac can also be represented by a 3 x 3 symmetric
matrix. Both the curvature and the Ricci tensors are evaluated
to where the wavefield is, making finite-difference stencils
redundant for their numerical evaluation and thus having neg-
ligible impact on numerical computations during propagation.
The curvature tensor R can be calculated from the metric
tensor of the bundle but is more efficiently computed from
the connection 1-form. Indeed, the covariant derivative of @
results in another skew-symmetric 3 x 3 matrix Q,

Q(X,Y) = (Dw)(X,Y),
QX,)Y)=0dxoY)—dvroX)+oX) ANo(Y), 9

where the wedge product A is the multiplication operation
for differential forms. In short, the wedge product is the
tensor product followed by antisymmetrization based on the
permutation of indices of each term. In equation 9 the wedge
product between the matrices of 1-forms then is a shorthand
for the antisymmetrization of the implied matrix multiplica-
tion:

oX) oY) =0X)o(Y)—-oY)o(X) (10)

A standard result of differential geometry then connects Q to
the curvature tensor R, because each element of this matrix is
in fact a function of the components of the curvature tensor
in a local coordinate frame x' (e.g., Petersen, 2006):

. 1 .
Q= Ele,ddxk/\dxl. (11)

Given this direct link to the curvature tensor, Q is called the
2-form curvature (of the connection). Like @, it can be com-
puted once a velocity model is known, and a parameterization
of the fibers is chosen.

In equation 11, the elements of the matrix Q are sums of 2-
forms with coefficients from the curvature tensor R expressed
in terms of the 2-form bases dx* Adx!. These bases are unit
areas defined by wedging the basis 1-forms dx* and dx’ re-
lated to coordinates x' (i = 1,...,N) used to parameterize the
frame bundle. This illustrates that the wedge product com-
bines lower-dimensional forms into higher-dimensional ones
ensuring that the resulting differential k-forms are also alter-
nating multi-linear functions of & input vectors. This encodes
oriented lines, planes, volumes, and higher-dimensional coun-
terparts in k-forms streamlining calculus and therefore wave
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propagation in general manifolds. Thus, dx* A dx! is a 2-form
that will take two vectors and output the oriented projection
of the area spanned by them onto the plane of the 2-form,
with the sign of the result changing whenever one swaps the
order of the input vectors.

With all the elements above, one is now able to write covari-
ant wave equations for TTI and TORT media as we did for
example equation 2. The key point is that the frame bundle
provides the means to write wave equations that are invariant
to changes in the orientation of the symmetry axes of the
elastic tensors.

CONCLUSIONS

We have introduced a new, mathematically rigorous approach
to wave propagation in heterogeneous elastic and anisotropic
models with TTI or TORT symmetry. By conceptualizing
velocity models as frame bundles, where local coordinate
frames align with the natural frame of elastic tensors, we
generalize and improve upon the current practice of using di-
rectional derivatives. This approach encodes frame rotations
directly into covariant wave equations, ensuring differential
operators are compatible with the metric of the new manifold
formed by combining spatial dimensions with the orientation
manifold. This method should enhance stability and reduce
numerical artifacts in wavefield simulations, potentially im-
proving reflectivity and velocity model estimation in inverse
problems like LSRTM or FWI. The frame bundle approach
also provides several insights and benefits for wave propa-
gation in anisotropic media: it separates the effects of the
underlying space geometry from the elastic tensor orientation,
lends physical meaning to orientation changes of symmetry
elements as new tidal forces, introduces a new model parame-
ter constraint in the form of a curvature tensor for inversion
problems, and opens avenues for developing more accurate
and efficient solvers that can adaptively account for frame
rotations. Additionally, it encourages further investigation
into orientation parameterization, such as using Euler angles
or quaternions.
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Figure 1: A cylinder and a Moebius strip are two fiber bundles
created by attaching copies of the real line (the fibers) to a
circle (the base space). Locally they can be represented by
the same flat space, but their global topologies are widely
different because how the fibers twist in the Moebius strip.

Figure 2: Frame bundle concept for TTI and TORT mod-
els. The gray 2-D surface represents the computational grid,
which determines the spatial discretization of the model us-
ing general curvilinear grids. The red, green and blue axes
show local frame orientations that are attached to the base
space but align with the elastic tensor symmetry elements at
each grid position, not to the geometry of the underlying base
space. This way elastic tensor orientation is decoupled from
the underlying spatial geometry.



