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Image-domain least-squares migration (i-LSM) is a powerful imaging tool that estimates a full-

bandwidth reflectivity (or perturbation) model from a seismic image by means of a spatially non-

stationary deconvolution process with so-called point-spread functions. However, neither a reflectivity 

nor a perturbation model are a direct representation of any subsurface reservoir property. In this work, 

we propose to recast i-LSM to retrieve full-bandwidthmedium properties (e.g., velocity); this is 

achieved by applying a Total-Variation (TV) regularisation term to the sum of the background velocity 

model (used to propagate wavefields in the Born modeling operator) and the velocity perturbation (used 

by the Born modeling operator to construct single-scattering seismic data). By leveraging the property 

of pre-composition of proximal operators, the proposed TV-regularised inverse problem can be 

successfully solved using the Primal-Dual algorithm with minimal additional cost to standard least-

squares regularised inversion (or sparsity-promoting inversion when inverting for reflectivity). 

Numerical results on both synthetic and field datasets are presented to verify the effectiveness of the 

proposed approach. 
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Total-Variation regularised image-domain least-squares migration 

 

Introduction 

Least-squares migration (LSM) is an advanced seismic imaging tool that provides enhanced resolution 

and amplitude fidelity compared to conventional (adjoint-based) migration methods. In image-domain 

least-squares migration (i-LSM), the goal is typically to invert pre-stack seismic data —such as common 

shot, receiver, or offset gathers— to obtain a reflectivity model or a medium property perturbation 

model (e.g., velocity or impedance) relative to a known background model. In the literature, the former 

case is often associated with Kirchhoff modelling/migration, whilst the latter is referred to Born 

modelling/migration (Yang and Zhang, 2019), regardless of whether these operators rely on asymptotic 

approximations or band-limited wavefield modeling engines. 

 

The primary objective of this work is to establish a framework to invert pre-stack seismic data for full-

bandwidthmedium properties. This is accomplished by applying Total Variation (TV) regularisation to 

the medium property of interest (e.g., velocity) while inverting for its perturbation component. This 

approach ensures an optimal blending of the frequency content between the two components, aligning 

with subsurface expectations, such as layered structures with sharp discontinuities between geological 

units. Numerical results on both synthetic and field datasets are presented to demonstrate the 

effectiveness of the proposed approach. 

 
Theory 

Let us begin by deriving the Born modelling operator, which will be utilised in the numerical examples. 

The variable-density, variable-velocity acoustic wave equation can be written in the time domain as: 
. 

ℒሺ𝑝; 𝑣, 𝑍ሻ ≔ ∇ ⋅
𝑣ሺ𝒙ሻ

𝑍ሺ𝒙ሻ
∇𝑝ሺ𝒙, 𝑡ሻ +

1

𝑍ሺ𝒙ሻ𝑣ሺ𝒙ሻ

𝜕𝑝ሺ𝒙,𝑡ሻ

𝜕𝑡2
= −

𝑣ሺ𝒙ሻ

𝑍ሺ𝒙ሻ
𝑠ሺ𝒙, 𝑡ሻ      (1) 

. 
where 𝑣ሺ𝒙ሻ is the velocity model, 𝑍ሺ𝒙ሻ = 𝜌ሺ𝒙ሻ𝑣ሺ𝒙ሻ is the acoustic impedance model, 𝑝ሺ𝒙, 𝑡ሻ is the 

acoustic wavefield, 𝑠ሺ𝒙, 𝑡ሻ is the source wavefield, and ∇ and ∇ ⋅ are the gradient and divergence 

operators. We define a background model 𝑣0ሺ𝒙ሻ for velocity and 𝑍0ሺ𝒙ሻ for impedance such that 𝑣ሺ𝒙ሻ =
𝑣0ሺ𝒙ሻ + 𝛿𝑣ሺ𝒙ሻ and 𝑍ሺ𝒙ሻ = 𝑍0ሺ𝒙ሻ + 𝛿𝑍ሺ𝒙ሻ.  We then subtract ℒሺ𝑝0; 𝑣0, 𝑍0ሻ from ℒሺ𝑝; 𝑣, 𝑍ሻ and 

perform a first-order perturbation of the terms 1/ሺ𝑍0 + 𝛿𝑍ሻ and 1/ሺ𝑍0 + 𝛿𝑍ሻሺ𝑣0 + 𝛿𝑣ሻ that results in 

the linearised version of the wave equation or Born modeling engine: 
.           

ℒሺ𝑝0; 𝑣0, 𝑍0ሻ ≔ ∇ ⋅
𝑣0ሺ𝒙ሻ

𝑍0ሺ𝒙ሻ
∇𝑝0ሺ𝒙, 𝑡ሻ +

1

𝑍0ሺ𝒙ሻ𝑣0ሺ𝒙ሻ

𝜕𝑝0ሺ𝒙,𝑡ሻ

𝜕𝑡2 = −
𝑣0ሺ𝒙ሻ

𝑍0ሺ𝒙ሻ
𝑠ሺ𝒙, 𝑡ሻ                                                      

𝛿ℒሺ𝛿𝑝; 𝑣0, 𝑍0ሻ ≔ ∇ ⋅
𝑣0ሺ𝒙ሻ

𝑍0ሺ𝒙ሻ
∇𝛿𝑝ሺ𝒙, 𝑡ሻ +

1

𝑍0ሺ𝒙ሻ𝑣0ሺ𝒙ሻ

𝜕𝛿𝑝ሺ𝒙,𝑡ሻ

𝜕𝑡2 = −
2
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ቀ𝑐𝑜𝑠2𝛾

𝛿𝑣ሺ𝒙ሻ

𝑣0ሺ𝒙ሻ
+ 𝑠𝑖𝑛2𝛾

𝛿𝑍ሺ𝒙ሻ

𝑍0ሺ𝒙ሻ
ቁ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝒱ሺ𝒙ሻ

𝜕𝑝0ሺ𝒙,𝑡ሻ

𝜕𝑡2     (2) 

 

The wave equation ℒሺ𝑝0; 𝑣0, 𝑍0ሻ in the background medium is solved to compute the incident wavefield 

𝑝
0

ሺ𝒙, 𝑡ሻ that, once multiplied with the scattering potential 𝒱ሺ𝒙ሻ in the right-hand side of second wave 

equation, leads to the secondary source of the Born modelling operator. Whilst this setting is general, 

in the following we will only consider the velocity perturbation 𝛿𝑣 (i.e., assuming constant density), 

which leads to a simplified scattering potential 𝒱ሺ𝒙ሻ = −2𝛿𝑣/𝑣0
3. 

 
Since Born modelling is a linear mapping between the perturbation 𝛅𝐯 and the single-scattering seismic 

waveform, from here onwards we use a discrete matrix-vector notation to represent such an operator: 
. 

𝛅𝐩 = 𝐋𝛅𝐯                     (3) 
. 

where 𝐋 is the modeling operator (that includes also any scaling in the scattering potential and a spatial 

sampling of the wavefield at the receiver locations to produce the recorded data 𝛅𝐩). Finding the 

perturbation that matches the observed data entails solving an inverse problem, usually referred to as 

data-domain least-squares migration. Alternatively, one can pre-multiply each side of equation 2 by 𝐋H 

to obtain: . 

𝛅𝐯෥ = 𝐇𝛅𝐯                          (4) 
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where 𝛅𝐯෥ = 𝐋H𝛅𝐩 represents the migrated image, and 𝐇 = 𝐋H𝐋 is the so-called Hessian of the 

demigration/migration operator’s chain. In industry practice, 𝐇 is usually approximated via a non-

stationary convolution operator where the filters are the impulse response or point-spread functions 

(PSFs) of the demigration-migration process due to Dirac-like velocity perturbations 𝛅𝐯=𝛅ሺ𝒙 − 𝒙𝟎ሻ at 

an ensemble of arbitrarily spaced locations 𝒙𝟎. The process of solving equation 3 for 𝛅𝐯 is usually 

referred to as image-domain least-squares migration. Despite its apparent simplicity, image-domain 

least-squares migration is a highly ill-posed inverse problem due to the band-limited nature of seismic 

data and the fact that the Born modelling operator can only approximately synthesize the observed data. 

First, to simplify the solution of this inverse problem and streamline the selection of the regularisation 

parameters for the inversion algorithms used in this work, the maximum eigenvalue of 𝐇H𝐇 (i.e., the 

Lipschitz constant of 1/2 ∥ 𝛅𝐯෤ − 𝐇𝛅𝐯 ∥2
2 is computed and the problem is scaled by the square root of its 

inverse. Second, to improve the convergence of the inversion process, a spatially dependent weighting 

is computed by interpolating the central values of each PSF over the grid of interest, and applying its 

inverse via a diagonal (or element-wise) operator 𝐊 to both the image-domain data and modeling 

operator. Moreover, given the ill-posed nature of the problem, it is of paramount importance to identify 

a robust, ad-hoc regularisation strategy. Whilst it may be complicated to identify a suitable 

regularisation for the velocity perturbation itself (given its nature as shown Figure 1e), a more natural 

approach is to impose a-priori knowledge on the full-bandwidth velocity model (𝐯 = 𝐯0 + 𝛅𝐯) with 𝐯0 

representing the known background velocity model used to propagate the background wavefield 𝑝
0
 in 

equation 2. By doing so, we can ensure that the frequency content of the background model and the 

inverted one seamlessly blend together in a optimal fashion (or at least optimal with respect to our prior 

knowledge injected by the regulariser). We therefore propose to solve the following optimization 

problem:. . 

. 𝑚𝑖𝑛
𝛅𝐯

   1/2 ∥ 𝐊𝛅𝐯෤ − 𝐊𝐇𝛅𝐯 ∥2
2+ ϵ ∥ ∇ሺ𝛅𝐯 + 𝐯0ሻ ∥2,1                (5) 

   

where ∇ is the gradient operator that takes a vector 𝛅𝐯 ∈ ℛ𝑛 and returns a matrix  ∇𝛅𝐯 =
ሾ∇x𝛅𝐯, ∇z𝛅𝐯ሿ𝑇 ∈ ℛ2×𝑛 (for simplicity, we consider here the 2-dimensional case). The regularisation 

term represents the isotropic TV norm of the full-bandwidthvelocity model and is used to promote 

blocky structures (i.e., sharp discontinuities between layers). Due to the non-smoothness of this term, 

the overall objective function cannot be minimised using gradient-based solvers; instead, we must rely 

on proximal algorithms such as the Alternating Direction Method of Multipliers (ADMM) on the 

Primal-Dual (PD) solvers. In this work, we decide to use the latter: such choice is motivated by 

numerical evidence that PD outperforms ADMM in various seismic inversion tasks (e.g., Ravasi and 

Birnie, 2023; Romero et al., 2023). The PD solver (Chambolle and Pock, 2011) is a type of proximal 

solver that works by recasting any problem of this kind: 
. 

     𝑚𝑖𝑛
𝛅𝐯

  𝑓ሺ𝛅𝐯ሻ + 𝑔ሺ𝐆𝛅𝐯ሻ              (6) 

. 
into its primal-dual equivalent (i.e., a saddle-point problem), where 𝑓 and 𝑔 are convex (and possibly 

non-smooth) functionals and 𝑮 is a linear operator. We can easily see that equation 5 is a special case 

of equation 6 where 𝑓ሺ𝛅𝐯ሻ = 1/2 ∥ 𝐊𝛅𝐯෥ − 𝐊𝐇𝛅𝐯 ∥2
2, 𝑮 = ∇, and 𝑔ሺ⋅ሻ =∥⋅ +∇𝐯0 ∥2,1. A series of 

iterations is then introduced to obtain convergence to the saddle point: 
. 

ቐ

𝐘k+1 = 𝑝𝑟𝑜𝑥𝜇𝑔∗ ሺ𝐘k + μ∇𝛅𝐯
k
ሻ

𝛅𝐯k+1 = 𝑝𝑟𝑜𝑥𝜏𝑓ሺ𝛅𝐯k − τ∇H𝐘k+1ሻ

𝛅𝐯
k+1

= 2𝛅𝐯k+1 − 𝛅𝐯k

                    (7) 

. 

where 𝐘 ∈ ℛ2×𝑛 is an auxiliary variable, and 𝜏 and 𝜇 represent the step-lengths of the two sub-gradients 

that must be chosen such that to 𝜏𝜇 < 1/𝜆𝑚𝑎𝑥ሺ∇H∇ሻ2 (where 𝜆𝑚𝑎𝑥ሺ∇H∇ሻ equals to 8 in 2-dimensions 

and 12 in 3-dimensions). The proximal operator 𝑓 is evaluated by inexactly solving the following 

optimization with a gradient-based iterative solver (e.g., LSQR): 
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Figure 1 Marmousi model example. a) Migrated image, b) point-spread functions, c) true velocity 

model, and d) TV-regularised inverted model. e-f) Corresponding velocity perturbations. 
. 

𝑝𝑟𝑜𝑥𝜏𝑓ሺ𝐱ሻ = ൫𝐈 + τ𝐇H𝐊H𝐊𝐇൯
−1

ሺ𝐱 + τ𝐇H𝐊H𝐊𝛅𝐯෥ሻ         (8) 

 

To evaluate the proximal operator of 𝑔, we instead leverage the property of pre-composition of a 

proximal operator (Parikh, 2013), together with the observation that the ∥⋅∥2,1 norm of a matrix is the 

sum of Euclidian norms of its columns (i.e., separable functions):  
. 

𝑝𝑟𝑜𝑥𝜇𝜖∥⋅+∇𝐯0∥2,1
ሺ𝐗ሻ = 𝑝𝑟𝑜𝑥𝜇𝜖∥⋅∥2,1

ሺ𝐗 + ∇𝐯0ሻ − ∇𝐯0 = ൣ𝑝𝑟𝑜𝑥𝜇𝜖∥⋅∥2
ሺ𝐗𝑖 + ∇𝐯0,𝑖ሻ − ∇𝐯0,𝑖  for 𝑖 = 1, … , 𝑛൧     (9) 

. 
where 𝐗i represents the i-th column of 𝐗 and 𝑝𝑟𝑜𝑥𝜇𝜖∥∥2

ሺ𝐱ሻ = ሺ1 − 𝜇𝜖/𝑚𝑎𝑥{||𝐱||2, 𝜇}ሻ𝐱. Finally, the 

Moreau identity is used to compute the dual proximal (i.e., proximal of the convex conjugate 𝑔∗): 

𝑝𝑟𝑜𝑥𝜇𝜖∥∥2
∗ = 𝐱 − 𝜇𝑝𝑟𝑜𝑥𝜖∥∥2/𝜇ሺ𝐱/𝜇ሻ. 

 

Numerical Results 

We apply the proposed i-LSM method to a synthetic dataset constructed from the Marmousi model and 

a 2D line of the Volve OBC field dataset. In both cases, we mimic an ocean-bottom acquisition setting 

and use band-limited two-way propagators in the Born migration/demigration operators. Starting from 

the Marmousi model, we create a dataset composed of 301 sources (41m spacing) and 101 receivers 

(122m spacing) with a 15Hz Ricker wavelet. To adhere to a single-scattering assumption, absorbing 

boundaries are added on all four sides of the model. Figure 1a displays the reverse time migrated (RTM) 

image obtained by applying the adjoint of the modeling operator in equation 2 with a background 

velocity model 𝑣0 obtained by applying a smoothing with a 20-sample boxcar filter to the true model 

(Figure 1c). Note that because of the presence of the −2/𝑣0
3 scaling factor, a depth-dependent gain is 

applied for visualization purposes. Similarly, PSFs are modeled by placing a grid of 30 x 7 equally 

spaced point-scatterers (387.5m in both directions) and shown in Figure 1b. In both cases a mask is 

applied to remove artifacts from the water column. Figure 1d shows the velocity model obtained by 

solving the optimization problem in equation 5. Finally, Figures 1e-f show the velocity perturbations 

for the true and inverted models. We observe that our approach can produce a satisfactory velocity 

model, and TV regularisation contributes to recovering more details and sharper discontinuities between   
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Figure 2 Volve field data example. a) Migrated image, b) point-spread functions, c) background 

velocity model, and d) TV-regularised inverted model. 

 

layers. A similar procedure is now applied to a 2D line of the Volve dataset, which is pre-processed to 

remove free-surface effects — see Ravasi et al. (2022). The processed shot gathers are migrated to 

produce the image in Figure 2a with the background velocity model in Figure 2c. The velocity model 

obtained by solving equation 5 is shown in Figure 2d. Like the synthetic case, we can observe how the 

high-frequency component of the seismic image is satisfactorily mapped into a velocity perturbation 

that nicely blends in with the background model. 

 

Conclusions 

We have presented a new formulation for image-domain least-squares migration that aims to reconstruct 

a full-bandwidthvelocity model by combining the known background model (used to propagate the 

wavefields in the Born modeling operator) and the velocity perturbation in the seismic image. By 

applying TV-regularisation to the velocity model, we ensure optimal mixing of the frequency-content 

of these two components with respect to our expectations of the subsurface. This is practically achieved 

by formulating the i-LSM problem in a way amenable to proximal algorithms, particularly to the Primal-

Dual solver. The presented framework is generic and can be easily extended to invert for alternative 

parametrizations (e.g., impedance plus velocity using equations 1 and 2 for modelling/migration, or 

elastic parameters using elastic Born modelling/migration engines); this represents an alternative to the 

traditional migration-plus-inversion industry-standard workflows, which fully accounts for and 

deconvolves the 3D effect of the seismic wavelet together with survey-design imprints/illumination, 

offering a more comprehensive solution beyond 1D convolutional models. 
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