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Summary 

 

Full Waveform Inversion (FWI) is a technique that leverages the discrepancy between modelled and 

observed seismic data to estimate a potentially high-resolution velocity model of the subsurface. 

However, due to the highly oscillatory nature of seismic waveforms, point-wise discrepancy measures 

are susceptible to cycle-skipping, particularly when starting from a poor initial velocity model. Over 

the years, various alternative misfit functions have been proposed, each with its own advantages and 

limitations. Dynamic Time Warping (DTW) is a widely used technique in signal processing for aligning 

two time series. Although a differentiable version of DTW has been recently developed, its application 

in gradient-based optimization faces challenges, including the presence of high-frequency artifacts in 

the adjoint source and the significant computational cost of gradient computation. In this work, we 

propose using a neural network to learn the time shift required to align a pair of time series in a 

supervised manner. The trained network is subsequently employed to compare traces from the observed 

and modelled data in FWI, offering a more computationally-efficient alternative to DTW. Moreover, as 

neural networks are inherently differentiable via back-propagation, the trained network can be 

seamlessly integrated into the misfit function of an FWI framework. We demonstrate the feasibility of 

this approach on the Chevron blind test dataset.  
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Introduction 

 

Full Waveform Inversion (FWI) is a technique aimed at inverting seismic data for a high-resolution 

subsurface model by matching simulated and observed seismograms. However, due to the oscillatory 

nature of the seismic recordings, FWI is a highly nonlinear and ill-posed inverse problem that is prone 

to falling into local minima and thus failing to recover a geologically plausible subsurface model. This 

problem, also known as cycle-skipping, arises when the simulated and observed seismograms are 

separated by more than half a cycle. 

 

Misfit functions focusing on the traveltime rather than amplitude mismatch between traces have been 

explored as a way to mitigate the cycle-skipping problem and include measures like cross-correlation 

(e.g., Van Leeuwen and Mulder, 2008, 2010), envelope (e.g., Bozdag et al., 2011), and optimal transport 

distance (e.g., Engquist et al., 2016), to name a few. Dynamic Time Warping (DTW – Sakoe and Chiba, 

1978) has also been used in the context of FWI (Ma and Hale, 2013); however, its application involves 

high computational costs and hyperparameter tuning. Soft-DTW (Cuturi and Blondel, 2017), a 

differentiable variant of DTW, addresses some of these limitations, although it still requires careful 

formulation to avoid negative values and suboptimal minima (Chen et al., 2021). 

 

Recent advancements in deep learning for time shift estimation have shown promise in seismic 

applications (Li and Abubakar, 2020). Building on this progress, we propose to use a neural network to 

estimate the time shift between two seismic traces and use it as an objective function within FWI; this 

approach offers differentiability, computational efficiency, and robustness against cycle-skipping, and 

provides results of comparable performance to DTW while being computationally more affordable. 

 

Methodology 

 

The objective of this work is to devise a neural network that predicts time shifts between two seismic 

traces, and embed it into the FWI workflow by minimizing the L2 norm of such time shifts. The process 

involves two stages: (1) a training stage, where the time shift mapping is learned in a semi-supervised 

manner, and (2) a deployment stage, where the trained network provides the time shift between 

modelledand observed traces, which is then used in the computation of the adjoint source for FWI. 

While we focus on a general traveltime-based objective function, in this study initially we apply the 

approach to refracted waves only – as is common practice for velocity model building. Thus, reflections 

are first masked from the observed seismic data to ensure compatibility with a smooth background 

velocity model, where reflections are weak or absent. At later inversion stages, reflection data is also 

included in the inversion.  

 

Training dataset 

The training dataset is created directly from the synthetic seismic traces modelled with the background 

velocity model to be used at the beginning of FWI. Such traces are shifted using a known time shift 

generated by summing multiple smooth Gaussian functions (i.e., 𝜏(𝑡) = ∑ 𝑒−(𝑡−𝜇𝑖)/𝜎𝑖   
𝑖=1:𝑁 , where N, 

𝜇𝑖 and 𝜎𝑖 are randomly sampled for user-defined distributions). Smoothness ensures stability when the 

predicted time shifts are used to compute the adjoint source for FWI. Moreover, to avoid misleading 

the network in areas where the seismic traces have zero amplitude, a windowing function is applied to 

the ground-truth time shift, ensuring it is nonzero only where an actual shift is present. 

 

Network and loss functions 

We adopt a 1D variant of the U-Net architecture (Ronneberger et al., 2015), which we modify to ensure 

smooth predictions. These adaptations include: (1) a smoothing layer after the last convolutional layer, 

(2) a kernel size of 11 × 11 (larger than what is commonly used in U-Net architectures), and (3) removal 

of the first skip connection to suppress high-frequency artifacts. The input of the network is composed 

by the concatenation of a reference 𝑑(𝑡) and its corresponding shifted trace 𝑑𝜏(𝑡) = 𝑑(𝑡 − 𝜏(𝑡)), and 

the output is the time shift 𝜏(𝑡). Training is performed in two phases. First, we train the network in a 
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semi-supervised manner, meaning that we use a combination of mean absolute error (MAE) between 

true and predicted time shifts and mean squared error (MSE) between shifted (using true shift) and 

reconstructed (shifted using predicted shift) traces as our training objective function: 

ℒ =  ℒ𝑀𝐴𝐸 (𝜏(𝑡), 𝜏𝑝(𝑡)) + 𝜇ℒ𝑀𝑆𝐸 (𝑑 (𝑡 − 𝜏𝑝(𝑡)) , 𝑑𝜏(𝑡)),             (1) 

 

where 𝜏𝑝(𝑡) = 𝑁𝑁𝜃(𝑑(𝑡) ⊕ 𝑑(𝑡 − 𝜏(𝑡))) is the predicted time shift, and 𝜇 is a weighing factor to 

balance the losses. After performing our first phase of training, the network is fine-tuned using traces 

from the modelled data as reference traces and traces from observed data as shifted traces to account 

for other differences besides time shifts using the ℒ𝑀𝑆𝐸 loss. 

 

Deployment: adjoint sources for FWI 

Once trained, the network can predict time shifts that measure the misalignment between modelled and 

observed data. We define the FWI misfit as follows: 
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where 𝑑𝑠,𝑟
𝑜𝑏𝑠(𝑡) and 𝑑𝑠,𝑟(𝑡) are the observed and modeled seismic traces from a source 𝑠 to a receiver 𝑟, 

respectively. The gradient of 𝐽 w.r.t. the model parameters 𝐦 can be written as: 
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where 𝜕𝐽/𝜕𝐝 is obtained by back-propagating the L2 norm of the predicted time shift through the 

network (and represents the adjoint source), whilst we use 𝜆𝑇 to indicate the traditional FWI gradient 

computed via the adjoint state method (red arrow in Figure 1). Finally, the model is updated iteratively 

until convergence, aligning observed and modelled data in terms of their phase (traveltime) content. 

 
Figure 1 Schematic representation of the proposed methodology where a neural-network-based time shift 

estimator is embedded in the FWI workflow. 

 

Numerical Examples 
 

Chevron released a marine synthetic dataset as a benchmark for blind tests during the 2014 SEG FWI 

workshop. The dataset was modelled using the 2D isotropic wave equation with a free-surface boundary 

condition at the top. It features complex geology and is contaminated by significant noise at both the 

low and high-frequency ends of the spectrum. The data consists of 1,600 shots recorded by 321 
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hydrophones, each capturing 8 seconds of data with a 4 ms sampling interval. Chevron also provided a 

far-field wavelet, a single well log, and an initial velocity model (Figure 2(a)). The streamer acquisition 

geometry starts at a 1 km source-receiver offset, with both sources and receivers placed at a depth of 15 

m. The receiver spacing is 25 m, and the maximum offset is 8 km. The model extends 6 km in depth 

and 47.75 km laterally. This dataset, along with the initial model, poses a significant challenge to 

conventional L2 norm-based FWI workflows due to the presence of cycle-skipping. 

 

To test the robustness of our approach, we performed FWI on a subset of 256 shots, starting from the 

first shot and selecting every sixth shot up to the 1,531st shot. We compare our approach to the 

divergence form of soft-DTW (with a regularization parameter γ = 100, hereafter referred to simply as 

SoftDTW). 

 
Figure 2  The Chevron initial velocity model with the provided well log (trajectory at x = 39.375 km and z = [1.0, 

2.45] km shown in black). (a) Initial velocity model, (b) velocity profile extracted along the well trajectory. 

 

In both cases, inversion is initially performed using only long-offset (e.g.,refraction) data, proceeding 

through three stages 

with maximum frequencies of 4 Hz, 5 Hz, and 6 Hz, respectively. We then include reflections, 

progressing through three additional stages with maximum frequencies of 7 Hz, 10 Hz, and 15 Hz. 

Figure 3 compares the first FWI gradient computed at a maximum frequency of 4 Hz using both 

SoftDTW and our time-shift-NN-based misfit. The gradient from the proposed misfit closely resembles 

that from Soft-DTW in terms of shape and polarity, especially in the shallow part of the model. This 

similarity is crucial because the shallow region is most influenced by refractions, and it suggests that 

our predicted time shifts are guiding the modelled data toward the observed data correctly. Figure 4 

shows the final velocity models after the complete inversion workflow, overlaid on the RTM images, 

for both misfit functions. Our FWI result appears very similar to that produced by SoftDTW. 

Furthermore, the well log comparison in Figure 2(b) shows that both methods have successfully 

recovered the correct velocities, with our approach being potentially more accurate in the shallower part 

of the model. 

 

Our misfit function, however, offers two key advantages: it is inherently differentiable and notably more 

computationally efficient. First, the natural differentiability of neural networks makes integration with 

FWI straightforward in that adjoint sources are a by-product of the ML construct. Second, computing 

one gradient with our misfit function is about 60% faster than with SoftDTW (from the tslearn library) 

on an NVIDIA A100 GPU. Moreover, to manage SoftDTW’s memory requirements, we had to 

downsample the data by a factor of five in time, which is not required in our approach. Assuming linear 

scalability, our approach provides a 92% reduction in computation time. Note that these numbers do 

not include training time for our approach, which is however negligible. 

 

Conclusions 

 

In this work, we proposed an NN-based-time-shift misfit function to compare modelled and observed 

datain FWI and demonstrated its effectiveness on the SEG 2014 Chevron synthetic dataset. Our results 

closely match those of SoftDTW in terms of accuracy, especially in the shallow part of the model, while 

offering significant computational and memory savings. More broadly, the proposed approach 
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highlights the potential of neural-network-based misfit functions as efficient and robust alternatives to 

conventional methods for large-scale nonlinear inverse problems. 
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Figure 3  The first iteration of FWI gradient, g, using (a) SoftDTW and (b) our approach. 

 

 
Figure 4 Final updated velocity models following the complete inversion process, overlaid on RTM 

images, using (a) SoftDTW and (b) our approach. 
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