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Summary: An accurate characterization of the shallow subsurface is crucial for evaluating the load-

bearing capacity at offshore wind farm sites. It is widely recognized that seismic methods, particularly 

inversion, can significantly enhance traditional geotechnical approaches with three-dimensional 

information that is otherwise unavailable. A comprehensive geotechnical analysis, however, relies on 

several scenarios with different confidence levels to establish robust and trustworthy geotechnical 

parameter ranges. Deterministic seismic inversion is inherently ill-suited for this purpose because it 

provides only the most likely subsurface characterization. Here, we discuss a variational-inference-

based Bayesian framework for UHR post-stack inversion, explicitly characterizing the uncertainties in 

acoustic impedance estimates. A notable feature of this approach is the ability to express these 

uncertainties in terms of credible intervals with arbitrary credibility. Our methodology leverages 

advanced deep-learning techniques, such as generative modeling via normalizing flows, to enable 

efficient and scalable implementations. 
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Enabling uncertainty quantification at scale for post-stack UHR seismic inversion 

 

Advancing quantitative seismic inversion for offshore windfarm site assessment 

 

For shallow subsurface characterization at offshore windfarm sites, geotechnical data such as cone 

penetration testing (CPT) and ultra-high-resolution (UHR) seismic data are typically collected. Seismic 

surveys - providing input for volumetric 3D subsurface information - are relatively efficient to acquire 

and can effectively complement CPT measurements, which in turn are spatially limited and expensive. 

However, seismic methods are mostly limited to structural imaging and shallow hazard identification, 

overlooking their potential for deriving quantitative subsurface properties, particularly in a geotechnical 

context.  

 

Achieving advanced quantitative inversion of seismic data requires specialized processing workflows 

commonly used in hydrocarbon exploration. However, these are rarely employed for windfarm site 

assessments and require notable adaptations to geotechnical requirements. These workflows include 

steps like de-signature, source-/receiver-side de-ghosting, and static corrections. Applying such 

techniques to UHR data poses challenges due to the lack of precise calibration measurements and the 

significant impact of sea-surface wave perturbations, but recent works demonstrated that this 

preprocessing can be adapted to UHR data as well (see, for instance, Telling et al., 2024). 

 

In this study, we focus on a probabilistic analysis of UHR data. We aim to assess the uncertainties 

associated with acoustic impedance inversion from migrated stacks, as impedance estimates can be 

related to volumetric CPT properties (Klinkvort et al., 2024). This uncertainty estimation is critical in 

wind farm site assessment where conservative hazard estimates are required. We base our analysis on 

Bayesian uncertainty quantification, leveraging the approach discussed by Rizzuti and Vasconcelos, 

2024, whose feasibility at scale is crucially enabled by modern deep-learning advancements. 

 

Bayesian uncertainty quantification with deep “invertible” variational inference 

 

In this section, we describe in broad terms the goal of Bayesian uncertainty quantification for post-stack 

acoustic seismic inversion. A linear model for seismic post-stack data 𝒚 given acoustic impedance 𝒙 

(more precisely, the logarithm thereof) is often assumed, together with normally distributed additive 

noise: 

𝒚 = 𝑾𝑫𝒕𝒙 + 𝒏, 𝒏 ∼ 𝑁(𝟎, 𝜎2). 

The linear operator is given by a time derivative followed by the (known) wavelet convolution. This 

describes the data likelihood model. Moreover, we also assume a prior distribution 𝑝(𝒙). According to 

the Bayes' rule, the posterior distribution of 𝒙 knowing 𝒚 is then 

𝑝(𝒙|𝒚) ∝ 𝑝(𝒚|𝒙)𝑝(𝒙). 

Bayesian uncertainty quantification is the characterization of the posterior distribution 𝑝(𝒙|𝒚). 
 

The traditional go-to tool of choice for uncertainty quantification in inverse problems has been Markov 

chain Monte Carlo sampling (McMC, Robert and Casella, 2010). Unfortunately, McMC methods do 

not scale effectively to large-sized inverse problems (especially in 3D), which has effectively limited 

Bayesian analysis for field data. 

 

An alternative class of methods and the focus for this work is variational inference (VI, Blei et al., 

2017). The basic idea is to look only for an approximation of the target distribution that is easier to 

handle computationally: 

𝑝(𝒙|𝒚) ≈ 𝑝𝜽(𝒙|𝒚). 

The parameter 𝜽 may represent mean and covariance of a Gaussian distribution (as in the so-called 

“mean-field” approximation), or – as in our case- weights and biases of a powerful neural network, the 

optimization of which requires some notion of “distance” in the distribution space. Such deep-learning-

based VI can provide expressive posterior representation together with computational feasibility. 
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In Rizzuti and Vasconcelos, 2024, we presented a variational inference approach where the posterior 

distribution is represented by an invertible neural network (also known as normalizing flows, Kobyzev 

et al., 2021). This class of generative models is especially well-suited for uncertainty quantification in 

seismic inverse problems: it allows a straightforward maximum likelihood estimation principle to 

optimize for the full candidate posterior distribution, enables training 3D networks at scale with cheaper 

requirements on HPC systems (compared to, e.g., VAEs, GANs, or diffusion models), and maintains 

fast inference (sample generation). In this paper, we apply this framework to UHR field data. 

 

Field data analysis from the German North Sea 

 

We analyze field data collected in the German North Sea for offshore windfarm development, focusing 

on a selected portion of a 2D seismic line located approximately 160 m from a projected CPT well-log 

site (see also Telling et al., 2024, for more information on the preprocessing workflow). 

 

The background acoustic impedance model is derived directly from the migration interval velocity 

using Gardner’s relation. A zero-phase wavelet was estimated by matching the background acoustic 

impedance with the post-stack seismic trace corresponding to the projected well-log location. The post-

stack data and the background acoustic impedance model are shown in Figure 1. 

 
                       Post-stack data                Background 

  
Figure 1 Seismic post-stack data and background acoustic impedance. 

 

The results of the uncertainty quantification are represented by a stochastic generative network where 

the inputs to the model are randomly chosen. So, in principle, its most complete characterization is by 

means of output samples, as shown in Figure 2. While this may provide a qualitative sense of the 

posterior variability, summary statistics such as point-wise mean or covariance help simplify the 

analysis more succinctly. 

 

 
Figure 2 Random samples from the estimated posterior distribution for post-stack inversion from which 

a qualitative sense of the posterior variability can be gleaned. 

 

In Figure 3, we display a conventional way to summarize the posterior distribution in terms of 

conditional mean, standard deviation, and covariance. These are computed from random posterior 
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samples, and, for Gaussian prior and likelihood, they even provide a complete characterization of the 

posterior. However, this characterization is only partial when these conditions are not met. 

 
Mean Standard deviation Grid-point covariance 

   
Figure 3 Point-wise conditional mean, standard deviation, and grid-point covariance obtained by 

averaging the acoustic impedance samples generated by a neural network (see Figure 2). The grid-

point covariance panel highlights in violet the spatial locations that are positively correlated with a 

grid-point of choice (indicated by the red arrow). The correlation region is mostly determined by the 

chosen regularization, which consists of structural smoothing. 

 

An alternative representation of the posterior distribution is by means of credible intervals, which 

provide ranges of the acoustic impedance parameters with a prescribed level of “confidence”. As an 

example, the inter-quartile and inter-decile intervals are presented in Figure 4. For imaging problems, 

we display those as a pair of images, each of which is the point-wise endpoint of said interval. For 

risk-averse applications, conservative ranges (such as the inter-decile interval) may be more indicated. 

Their use must be, in general, tailored to the problem and needs at hand. 

 
Inter-quartile range 

                          P25%                        P75% 

  
Inter-decile range 

                          P10%                        P90% 

  
Figure 4 Examples of credible intervals for the acoustic impedance: the inter-quartile and inter-decile 

ranges. Each of these is represented by a pair of values (images) representing the endpoints. 
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Future directions for probabilistic UHR quantitative inversion 

 

The deep-learning workflow presented here offers a flexible and computationally efficient approach for 

uncertainty quantification in UHR post-stack seismic data. This method holds significant potential to 

inform decision-making processes in offshore windfarm development. While our example focuses on a 

2D seismic line, the approach is inherently scalable to 3D post-stack inversion problems. Although 

UHR data acquisition is currently predominantly limited to 2D, the proposed framework is well-

prepared for future advancements in 3D acquisition technologies or the use of more complex imaging 

such as FWI. 

 

A key challenge in a quantitative inversion of UHR data remains the integration of CPT or seismic-

CPT well-log information, particularly for accurate wavelet calibration and background acoustic 

impedance estimation. Seismic-CPT measurements often provide well-log data sampled at lower 

resolutions than seismic data, with geo-mechanical properties like density inferred indirectly. 

Additionally, seismic data characteristics and local measurements can exhibit significant variability 

over short distances, even within tens of meters from a reference 2D line. Looking ahead, we aim to 

refine the quantitative analysis of UHR data by incorporating seismic-CPT well-logs and accounting 

for wavelet effects in the uncertainty framework. This methodology can also be readily extended to 

elastic impedance inversion. 
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