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Abstract 

Point-estimate statistics for inverse problems, such as the maximum a-posteriori estimator, require the 

solution of a problem that is typically ill-conditioned for seismic imaging applications, with important 

implications in terms of computational complexity. Ill-conditioning is arguably an even bigger 

challenge for uncertainty quantification, which aims at a more comprehensive characterisation of the 

posterior distribution. One classical strategy to assuage these issues is the multiscale approach, where 

the original problem is broken down into a hierarchical sequence of sub-problems with increasing 

computational complexity. Each sub-problem describes scale-dependent features of the overall solution 

for any chosen scale-dependent decomposition. This gives rise to an efficient iterative method that 

progressively builds a solution from "coarse" to "fine" scales. We propose to leverage recent 

developments in machine-learning-based variational inference for uncertainty quantification that uses 

a wavelet-based generative model of the posterior distribution. The architectural design is based on a 

normalising flow that generates the scales of a sample sequentially and conditionally based on the 

coarser scales. As a first application of this framework, we study post-stack seismic inversion here. 

 

Novelty: We apply a multiscale neural network based on the combination of normalising flows and 

wavelet decomposition for estimating uncertainty in inverse problems 

 

Key aspects: The multiscale architecture of the network allows a scale-by-scale sequential estimation 

of the uncertainty, thus reducing ill-conditioning and further increasing computation efficiency for 

both training and inference at progressively coarser scales 
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Multiscale uncertainty quantification for post-stack seismic inversion with wavelet flows 

 

Introduction 

 

Acoustic post-stack seismic inversion aims at characterising the acoustic impedance of the medium 

from stacked images or data. In 2D, the acoustic impedance unknowns are generally discretised on a 

time/common-midpoint coordinate grid (𝑡, 𝑥) and denoted by 𝒙 ∈ 𝑅𝑛𝑡×𝑛𝑥. Data 𝒚 indicate stacked 

seismic traces, conventionally obtained from migration techniques, and are denoted by 𝒚 ∈ 𝑅𝑛𝑡×𝑛𝑥. 

 

According to the Bayes' rule, the posterior distribution of 𝒙 knowing 𝒚 is given by 𝑝(𝒙|𝒚) =
𝑝(𝒚|𝒙)𝑝(𝒙)/𝑝(𝒚), where 𝑝(𝒚|𝒙) and 𝑝(𝒙) are, respectively, the likelihood and the prior distributions. 

We assume a (known) linear data-generation model: 

 
− log 𝑝(𝒚|𝒙) =

1

2𝜎2
‖𝑨𝒙 − 𝒚‖2 + ⋯ , 𝑨 = 𝑾𝑫𝑡 

(1) 

 

The operator 𝑾 denotes a convolution in time with an estimated wavelet, while 𝑫𝑡 is the time 

derivative. The symbol ‖⋅‖ indicates the least-squares norm. Finally, the data noise standard deviation, 

tied to 𝑝(𝒚|𝒙), is 𝜎. Additional terms not relevant to this paper are indicated by “⋯”. 

 

We assume that the prior distribution is differentiable and available in analytical form. For simplicity, 

however, we focus on Gaussian priors of the form: 

 
− log 𝑝(𝒙) =

1

2𝜏1
2

‖𝒙 − 𝒙0‖2 +
1

2𝜏2
2

‖𝑩𝒙‖2 + ⋯. 
(2) 

 

Here, 𝒙0 is a background model. The weighting matrix 𝑩 = (𝑰 − 𝝃𝝃T)𝛁𝑡𝑥 promotes models whose 

gradient field 𝛁𝑡𝑥𝒙 aligns with some (given) prior structural information. The scalar quantities 𝜏1 and 

𝜏2 govern the relative weighting of the regularisation terms in Equation 2. 

 

The problem object of this paper is the characterisation of the posterior distribution for some given data 

𝒚 (a single sample). The desired solution consists of generating random samples 𝒙~𝑝(𝒙|𝒚), from which 

any statistical moment can then be approximated. While the problem in Equations 1 and 2 admits a 

straightforward analytical solution in 2D, it is useful as a benchmark for comparing various uncertainty 

quantification (UQ) techniques. 

 

Prior art and contributions 

 

The most classical methods for UQ are based on Markov-chain Monte Carlo sampling (MCMC). While 

the history of MCMC in geophysics is deep, its application remains computationally challenging, 

especially for 3D non-linear imaging problems. 

 

Variational inference is an alternative approach where the target posterior distribution is approximated 

by a member of a parameterised family of distributions, which is optimal in some sense. For example, 

particle-based variational inference parametrises the candidate distribution directly in terms of model 

samples: this is the case for the Stein Variational Gradient Descent method (SVGD). Notable 

applications can be found in Zhang et al. (2023) and Izzatullah et al. (2023). Alternatively, the 

distribution can be implicitly represented by a generative model based on neural networks. The class of 

normalising flows (NF, Kobyzev et al., 2021, Orozco et al., 2023b) is of particular interest here, since 

it allows the analytical computation of its own output density function. Seismic applications include 

those by Rizzuti et al. (2020), Zhang and Curtis (2021), Siahkoohi et al. (2023), Orozco et al. (2023a). 

 

In this work, we focus on multiscale UQ techniques. The primary motivation consists in the need to 

effectively extend the scope of UQ to large-sized ill-conditioned inverse problems, both for the sake of 

computationally efficiency in UQ and to accommodate scale-dependent UQ for multiple seismic 

applications, ranging from post-stack inversion to full-waveform inversion (FWI). We discuss the novel 

application of a particular normalising flow architecture, originally presented in Yu et al. (2020) for 

generative modelling, based on a wavelet-based scale decomposition of the posterior distribution. The 
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network allows scale-wise sequential training with evident computational benefits. Contrary to the work 

of Yu et al. (2020), we are not tackling a classical generative modelling application in the sense that 

training samples 𝒙~𝑝(𝒙|𝒚) are not available, but the density function analytical form is. Furthermore, 

the motivations for the wavelet decomposition are different. In Yu et al. (2020) the NFs associated to 

different scales can be trained independently and in parallel to scale up NF-based generative modelling. 

In our case, the scale-dependent distributions are rather approximated sequentially from coarse to fine 

levels for the purpose of reducing the ill-conditioning of the inverse problem under examination. 

 

Multiscale normalising flow framework 

 

We consider the family of candidate distributions 𝒙~𝑝𝜽(𝒙) ≈ 𝑝(𝒙|𝒚) represented by the transport maps 

𝑇𝜽: 𝑍 → 𝑋, e.g. 

 𝒙~𝑝𝜽(𝒙)   ⇔   𝒙 = 𝑇𝜽(𝒛), 𝒛~𝑝(𝒛). (3) 

 

The latent-space variables 𝒛 are drawn from a simple distribution (e.g. a standard Gaussian). The 

transport maps are parametrised by the unknowns 𝜽, which correspond to the parameters of a neural 

network. We then seek to minimise the Kullback-Leibler divergence: 

 

 min
𝜽

KL(𝑝𝜽(𝒙)‖ 𝑝(𝒙|𝒚)) = 𝐸𝒛~𝑝(𝒛) − log 𝑝(𝑇𝜽(𝒛)|𝒚) + log 𝑝𝜽(𝑇𝜽(𝒛)) + ⋯ . (4) 

 

The first term in Equation 4 is the average reconstruction error, while the second term penalises mode-

collapsing to the maximum a-posteriori estimate (MAP). For general transport maps, calculating and 

differentiating this term is intractable. However, special neural architectures such as normalising flows 

are designed to provide this quantity exactly (Kobyzev et al., 2021). 

 

In this paper, we focus on normalising flows. Several competing architectural choices are available in 

the literature, but we adopt a multiscale structure based on the Haar wavelet decomposition (Yu et al., 

2020), dubbed Wavelet flow (see Figure 1). The low- and high-resolution components of the (2D) 

wavelet transform 𝑾𝑘 applied to an image 𝒙𝑘 ∈ 𝑅𝑛𝑡/2𝑘×𝑛𝑥/2𝑘
 are denoted as 𝒙𝑘+1 ∈ 𝑅𝑛𝑡/2𝑘+1×𝑛𝑥/2𝑘+1

 

and 𝒙̃𝑘+1 ∈ 𝑅𝑛𝑡/2𝑘+1×𝑛𝑥/2𝑘+1×3, respectively. The superscript 𝑘 indicates a certain resolution level, 

with 𝒙0 = 𝒙. Due to orthogonality, this implies: 

 

 𝑾𝑘𝒙𝑘 = (𝒙𝑘+1, 𝒙̃𝑘+1) → 𝑝(𝒙𝑘) = 𝑝(𝒙𝑘+1, 𝒙̃𝑘+1) = 𝑝(𝒙̃𝑘+1|𝒙𝑘+1)𝑝(𝒙𝑘+1).  (5) 

 

By applying recursively the wavelet transform up to a certain scale 𝐾, we obtain the following 

probabilistic chain: 

 𝑝(𝒙0) = 𝑝(𝒙̃1|𝒙1)𝑝(𝒙̃2|𝒙2) ⋯ 𝑝(𝒙̃𝐾|𝒙𝐾)𝑝(𝒙𝐾),  (6) 

 

with, again, 𝒙0 = 𝒙. Yu et al. (2020) leverage the scale-wise decomposition in Equation 6 by training 

individual conditional NFs to approximate the conditional densities 𝑝𝜽𝒌(𝒙̃𝑘|𝒙𝑘) ≈ 𝑝(𝒙̃𝑘|𝒙𝑘) and a final 

NF for the coarsest scale distribution 𝑝𝜽𝑲(𝒙𝐾) ≈ 𝑝(𝒙𝐾). 

 

 
Figure 1 Wavelet flow architecture. The wavelet transform W decomposes an image on several 

scale levels, the image distribution at each scale is learned by a dedicated NF. 
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Benchmark results: Volve field data 

 

We consider 2D post-stack seismic inversion for a selected section of the Volve field data set 

(equinor.com/energy/volve-data-sharing). Pre-processing (data selection, velocity, and wavelet 

estimation) is carried out after Izzatullah et al. (2023). In Figure 2, we show the post-stack data and a 

smoothed background acoustic impedance. 

 

 
Figure 2 A 2D section of the Volve data set together with background acoustic impedance 

 

We perform UQ according to several methods. The analytic method provides ground-truth results, 

which can be computed due to the simplifying assumptions in Equation 1 and Equation 2 (e.g., Gaussian 

likelihood and prior). The NF-based method was described in the previous section. We also compare 

these results with the particle-based SVGD method, which shares many similarities with our proposed 

scheme but as an optimisation approach presents challenges with initialisation and numerical cost 

scaling. The first-order statistics, e.g. the conditional mean and (point-wise) standard deviation, for 

these three methods are displayed in Figure 3. 

 

 
Figure 3 Comparison of first-order statistics for different UQ methods 

 

Discussion and conclusions 

 

All three methods compared in Figure 3 produce near-identical conditional means. This is due to how 

both the NF and SVGD methods are initialised (that is, as perturbations around the pre-computed MAP). 

Regarding the conditional standard deviation, the NF-based method is quantitatively close to the ground 

truth, with only some light underestimation. The SVGD-based UQ, on the other hand, is heavily biased 
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due to the limited number of particles (equal to 128 in this case; see the standard deviation scaling in 

Figure 3). As noted in Zhang et al. (2023), stochastic variants of SVGD might reduce the bias. We 

remark that NF- and SVGD-based UQ both seek to minimise the KL divergence with transport maps. 

Furthermore, the output of the NF can be considered a “particle” and the batch size used in the training 

phase can be equated to the particle number in SVGD, but we argue that NF-based UQ is intrinsically 

more efficient than SVGD due to the underlying functional representation of the particle distribution 

(as opposed to the explicit particle representation in SVGD). 

 

The multiscale nature of the proposed method is highlighted in Figure 4, where the first-order statistics 

are computed for random samples produced at selected scales. We note that a multiscale approach can 

be included in SVGD, in principle, but this does not fundamentally resolve its memory-complexity 

limitations due to the particle number, while it is a by-product of our NF framework. 

 

 
Figure 4 UQ for several resolution scales as a by-product of the multiscale NF-based method 

 

The framework described in the previous sections can be applied to more general settings. For example 

it can deal with non-linear forward operators and/or non-Gaussian priors. Aside from looking at more 

complex imaging applications (such as tomography or FWI), future work might also explore the role of 

learned wavelet decomposition and loop-unrolling techniques to include problem-specific inductive 

bias directly in the network architecture. 
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